Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
|
Compute real eigen values and eigen vectors of a symmetric matrix using QR decomposition method. More...
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include "./qr_decompose.h"
Namespaces | |
namespace | qr_algorithm |
Functions to compute QR decomposition of any rectangular matrix. | |
Macros | |
#define | LIMS 9 |
Functions | |
void | create_matrix (std::valarray< std::valarray< double > > *A) |
void | mat_mul (const std::valarray< std::valarray< double > > &A, const std::valarray< std::valarray< double > > &B, std::valarray< std::valarray< double > > *OUT) |
std::valarray< double > | qr_algorithm::eigen_values (std::valarray< std::valarray< double > > *A, bool print_intermediates=false) |
void | test1 () |
void | test2 () |
int | main (int argc, char **argv) |
Compute real eigen values and eigen vectors of a symmetric matrix using QR decomposition method.
#define LIMS 9 |
limit of range of matrix values
void create_matrix | ( | std::valarray< std::valarray< double > > * | A | ) |
create a symmetric square matrix of given size with random elements. A symmetric square matrix will always have real eigen values.
[out] | A | matrix to create (must be pre-allocated in memory) |
int main | ( | int | argc, |
char ** | argv ) |
main function
void mat_mul | ( | const std::valarray< std::valarray< double > > & | A, |
const std::valarray< std::valarray< double > > & | B, | ||
std::valarray< std::valarray< double > > * | OUT ) |
Perform multiplication of two matrices.
[in] | A | first matrix to multiply |
[in] | B | second matrix to multiply |
[out] | OUT | output matrix (must be pre-allocated) |
void test1 | ( | ) |
test function to compute eigen values of a 2x2 matrix
\[\begin{bmatrix} 5 & 7\\ 7 & 11 \end{bmatrix}\]
which are approximately, {15.56158, 0.384227}
void test2 | ( | ) |
test function to compute eigen values of a 2x2 matrix
\[\begin{bmatrix} -4& 4& 2& 0& -3\\ 4& -4& 4& -3& -1\\ 2& 4& 4& 3& -3\\ 0& -3& 3& -1&-1\\ -3& -1& -3& -3& 0 \end{bmatrix}\]
which are approximately, {9.27648, -9.26948, 2.0181, -1.03516, -5.98994}