Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
Loading...
Searching...
No Matches
fibonacci_sum.cpp File Reference

An algorithm to calculate the sum of Fibonacci Sequence: \(\mathrm{F}(n) + \mathrm{F}(n+1) + .. + \mathrm{F}(m)\). More...

#include <cassert>
#include <iostream>
#include <vector>
Include dependency graph for fibonacci_sum.cpp:

Namespaces

namespace  math
 for IO operations
 
namespace  fibonacci_sum
 Functions for the sum of the Fibonacci Sequence: \(\mathrm{F}(n) + \mathrm{F}(n+1) + .. + \mathrm{F}(m)\).
 

Typedefs

using math::fibonacci_sum::matrix = std::vector<std::vector<uint64_t> >
 

Functions

math::fibonacci_sum::matrix math::fibonacci_sum::multiply (const math::fibonacci_sum::matrix &T, const math::fibonacci_sum::matrix &A)
 
math::fibonacci_sum::matrix math::fibonacci_sum::power (math::fibonacci_sum::matrix T, uint64_t ex)
 
uint64_t math::fibonacci_sum::result (uint64_t n)
 
uint64_t math::fibonacci_sum::fiboSum (uint64_t n, uint64_t m)
 
static void test ()
 
int main ()
 Main function.
 

Detailed Description

An algorithm to calculate the sum of Fibonacci Sequence: \(\mathrm{F}(n) + \mathrm{F}(n+1) + .. + \mathrm{F}(m)\).

An algorithm to calculate the sum of Fibonacci Sequence: \(\mathrm{F}(n) + \mathrm{F}(n+1) + .. + \mathrm{F}(m)\) where \(\mathrm{F}(i)\) denotes the i-th Fibonacci Number . Note that F(0) = 0 and F(1) = 1. The value of the sum is calculated using matrix exponentiation. Reference source: https://stackoverflow.com/questions/4357223/finding-the-sum-of-fibonacci-numbers

Author
Sarthak Sahu

Function Documentation

◆ fiboSum()

uint64_t math::fibonacci_sum::fiboSum ( uint64_t n,
uint64_t m )

Function to compute sum of fibonacci sequence from n to m.

Parameters
nstart of sequence
mend of sequence
Returns
uint64_t the sum of sequence
90 {
91 return (result(m + 2) - result(n + 1));
92}
uint64_t result(uint64_t n)
Definition fibonacci_sum.cpp:76
Here is the call graph for this function:

◆ main()

int main ( void )

Main function.

Returns
0 on exit
136 {
137 test(); // execute the tests
138 return 0;
139}
static void test()
Definition fibonacci_sum.cpp:101
Here is the call graph for this function:

◆ multiply()

math::fibonacci_sum::matrix math::fibonacci_sum::multiply ( const math::fibonacci_sum::matrix & T,
const math::fibonacci_sum::matrix & A )

Function to multiply two matrices

Parameters
Tmatrix 1
Amartix 2
Returns
resultant matrix
39 {
41
42 // multiplying matrices
43 result[0][0] = T[0][0] * A[0][0] + T[0][1] * A[1][0];
44 result[0][1] = T[0][0] * A[0][1] + T[0][1] * A[1][1];
45 result[1][0] = T[1][0] * A[0][0] + T[1][1] * A[1][0];
46 result[1][1] = T[1][0] * A[0][1] + T[1][1] * A[1][1];
47
48 return result;
49}
Here is the call graph for this function:

◆ power()

math::fibonacci_sum::matrix math::fibonacci_sum::power ( math::fibonacci_sum::matrix T,
uint64_t ex )

Function to compute A^n where A is a matrix.

Parameters
Tmatrix
expower
Returns
resultant matrix
57 {
58 math::fibonacci_sum::matrix A{{1, 1}, {1, 0}};
59 if (ex == 0 || ex == 1) {
60 return T;
61 }
62
63 T = power(T, ex / 2);
64 T = multiply(T, T);
65 if (ex & 1) {
66 T = multiply(T, A);
67 }
68 return T;
69}
int multiply(int x, int res[], int res_size)
Definition power_for_huge_numbers.cpp:25
void power(int x, int n)
Definition power_for_huge_numbers.cpp:56
Here is the call graph for this function:

◆ result()

uint64_t math::fibonacci_sum::result ( uint64_t n)

Function to compute sum of fibonacci sequence from 0 to n.

Parameters
nnumber
Returns
uint64_t ans, the sum of sequence
76 {
77 math::fibonacci_sum::matrix T{{1, 1}, {1, 0}};
78 T = power(T, n);
79 uint64_t ans = T[0][1];
80 ans = (ans - 1);
81 return ans;
82}
Here is the call graph for this function:

◆ test()

static void test ( )
static

Function for testing fiboSum function. test cases and assert statement.

Returns
void
101 {
102 uint64_t n = 0, m = 3;
103 uint64_t test_1 = math::fibonacci_sum::fiboSum(n, m);
104 assert(test_1 == 4);
105 std::cout << "Passed Test 1!" << std::endl;
106
107 n = 3;
108 m = 5;
109 uint64_t test_2 = math::fibonacci_sum::fiboSum(n, m);
110 assert(test_2 == 10);
111 std::cout << "Passed Test 2!" << std::endl;
112
113 n = 5;
114 m = 7;
115 uint64_t test_3 = math::fibonacci_sum::fiboSum(n, m);
116 assert(test_3 == 26);
117 std::cout << "Passed Test 3!" << std::endl;
118
119 n = 7;
120 m = 10;
121 uint64_t test_4 = math::fibonacci_sum::fiboSum(n, m);
122 assert(test_4 == 123);
123 std::cout << "Passed Test 4!" << std::endl;
124
125 n = 9;
126 m = 12;
127 uint64_t test_5 = math::fibonacci_sum::fiboSum(n, m);
128 assert(test_5 == 322);
129 std::cout << "Passed Test 5!" << std::endl;
130}
T endl(T... args)
uint64_t fiboSum(uint64_t n, uint64_t m)
Definition fibonacci_sum.cpp:90
static void test_1()
Definition heavy_light_decomposition.cpp:505
static void test_2()
Definition heavy_light_decomposition.cpp:549
static void test_3()
Definition heavy_light_decomposition.cpp:592
Here is the call graph for this function: