Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
|
Implementation of the Composite Simpson Rule for the approximation. More...
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <iostream>
#include <map>
Namespaces | |
namespace | numerical_methods |
for assert | |
namespace | simpson_method |
Contains the Simpson's method implementation. | |
Functions | |
double | numerical_methods::simpson_method::evaluate_by_simpson (std::int32_t N, double h, double a, const std::function< double(double)> &func) |
double | numerical_methods::simpson_method::f (double x) |
A function f(x) that will be used to test the method. | |
double | numerical_methods::simpson_method::g (double x) |
Another test function. | |
double | numerical_methods::simpson_method::k (double x) |
Another test function. | |
double | numerical_methods::simpson_method::l (double x) |
Another test function. | |
static void | test (std::int32_t N, double h, double a, double b, bool used_argv_parameters) |
Self-test implementations. | |
int | main (int argc, char **argv) |
Main function. | |
Implementation of the Composite Simpson Rule for the approximation.
The following is an implementation of the Composite Simpson Rule for the approximation of definite integrals. More info -> wiki: https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule
The idea is to split the interval in an EVEN number N of intervals and use as interpolation points the xi for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the first and last points of the interval of the integration [a, b].
We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula: I = h/3 * {f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)}
That means that the first and last indexed i f(xi) are multiplied by 1, the odd indexed f(xi) by 4 and the even by 2.
In this program there are 4 sample test functions f, g, k, l that are evaluated in the same interval.
Arguments can be passed as parameters from the command line argv[1] = N, argv[2] = a, argv[3] = b
N must be even number and a<b.
In the end of the main() i compare the program's result with the one from mathematical software with 2 decimal points margin.
Add sample function by replacing one of the f, g, k, l and the assert
double numerical_methods::simpson_method::evaluate_by_simpson | ( | std::int32_t | N, |
double | h, | ||
double | a, | ||
const std::function< double(double)> & | func ) |
double numerical_methods::simpson_method::f | ( | double | x | ) |
double numerical_methods::simpson_method::g | ( | double | x | ) |
double numerical_methods::simpson_method::k | ( | double | x | ) |
double numerical_methods::simpson_method::l | ( | double | x | ) |
Another test function.
int main | ( | int | argc, |
char ** | argv ) |
Main function.
argc | commandline argument count (ignored) |
argv | commandline array of arguments (ignored) |
Number of intervals to divide the integration interval. MUST BE EVEN
Starting and ending point of the integration in the real axis
Step, calculated by a, b and N
|
static |
Self-test implementations.
N | is the number of intervals |
h | is the step |
a | is x0 |
b | is the end of the interval |
used_argv_parameters | is 'true' if argv parameters are given and 'false' if not |