Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
Loading...
Searching...
No Matches
qr_algorithm Namespace Reference

Functions to compute QR decomposition of any rectangular matrix. More...

Functions

template<typename T >
std::ostreamoperator<< (std::ostream &out, std::valarray< std::valarray< T > > const &v)
 
template<typename T >
std::ostreamoperator<< (std::ostream &out, std::valarray< T > const &v)
 
template<typename T >
double vector_dot (const std::valarray< T > &a, const std::valarray< T > &b)
 
template<typename T >
double vector_mag (const std::valarray< T > &a)
 
template<typename T >
std::valarray< T > vector_proj (const std::valarray< T > &a, const std::valarray< T > &b)
 
template<typename T >
void qr_decompose (const std::valarray< std::valarray< T > > &A, std::valarray< std::valarray< T > > *Q, std::valarray< std::valarray< T > > *R)
 
std::valarray< double > eigen_values (std::valarray< std::valarray< double > > *A, bool print_intermediates=false)
 

Detailed Description

Functions to compute QR decomposition of any rectangular matrix.

Function Documentation

◆ eigen_values()

std::valarray< double > qr_algorithm::eigen_values ( std::valarray< std::valarray< double > > * A,
bool print_intermediates = false )

Compute eigen values using iterative shifted QR decomposition algorithm as follows:

  1. Use last diagonal element of A as eigen value approximation \(c\)
  2. Shift diagonals of matrix \(A' = A - cI\)
  3. Decompose matrix \(A'=QR\)
  4. Compute next approximation \(A'_1 = RQ \)
  5. Shift diagonals back \(A_1 = A'_1 + cI\)
  6. Termination condition check: last element below diagonal is almost 0
    1. If not 0, go back to step 1 with the new approximation \(A_1\)
    2. If 0, continue to step 7
  7. Save last known \(c\) as the eigen value.
  8. Are all eigen values found?
    1. If not, remove last row and column of \(A_1\) and go back to step 1.
    2. If yes, stop.
Note
The matrix \(A\) gets modified
Parameters
[in,out]Amatrix to compute eigen values for
[in]print_intermediates(optional) whether to print intermediate A, Q and R matrices (default = false)
99 {
100 int rows = A->size();
101 int columns = rows;
102 int counter = 0, num_eigs = rows - 1;
103 double last_eig = 0;
104
107
108 /* number of eigen values = matrix size */
109 std::valarray<double> eigen_vals(rows);
110 for (int i = 0; i < rows; i++) {
111 Q[i] = std::valarray<double>(columns);
112 R[i] = std::valarray<double>(columns);
113 }
114
115 /* continue till all eigen values are found */
116 while (num_eigs > 0) {
117 /* iterate with QR decomposition */
118 while (std::abs(A[0][num_eigs][num_eigs - 1]) >
120 // initial approximation = last diagonal element
121 last_eig = A[0][num_eigs][num_eigs];
122 for (int i = 0; i < rows; i++) {
123 A[0][i][i] -= last_eig; /* A - cI */
124 }
125
126 qr_decompose(*A, &Q, &R);
127
128 if (print_intermediates) {
129 std::cout << *A << "\n";
130 std::cout << Q << "\n";
131 std::cout << R << "\n";
132 printf("-------------------- %d ---------------------\n",
133 ++counter);
134 }
135
136 // new approximation A' = R * Q
137 mat_mul(R, Q, A);
138
139 for (int i = 0; i < rows; i++) {
140 A[0][i][i] += last_eig; /* A + cI */
141 }
142 }
143
144 /* store the converged eigen value */
145 eigen_vals[num_eigs] = last_eig;
146 // A[0][num_eigs][num_eigs];
147 if (print_intermediates) {
148 std::cout << "========================\n";
149 std::cout << "Eigen value: " << last_eig << ",\n";
150 std::cout << "========================\n";
151 }
152
153 num_eigs--;
154 rows--;
155 columns--;
156 }
157 eigen_vals[0] = A[0][0][0];
158
159 if (print_intermediates) {
160 std::cout << Q << "\n";
161 std::cout << R << "\n";
162 }
163
164 return eigen_vals;
165}
T printf(T... args)
void mat_mul(const std::valarray< std::valarray< double > > &A, const std::valarray< std::valarray< double > > &B, std::valarray< std::valarray< double > > *OUT)
Definition qr_eigen_values.cpp:54
Here is the call graph for this function:

◆ operator<<() [1/2]

template<typename T >
std::ostream & qr_algorithm::operator<< ( std::ostream & out,
std::valarray< std::valarray< T > > const & v )

operator to print a matrix

34 {
35 const int width = 12;
36 const char separator = ' ';
37
38 out.precision(4);
39 for (size_t row = 0; row < v.size(); row++) {
40 for (size_t col = 0; col < v[row].size(); col++)
41 out << std::right << std::setw(width) << std::setfill(separator)
42 << v[row][col];
43 out << std::endl;
44 }
45
46 return out;
47}
T endl(T... args)
T right(T... args)
T precision(T... args)
T setfill(T... args)
T setw(T... args)
Here is the call graph for this function:

◆ operator<<() [2/2]

template<typename T >
std::ostream & qr_algorithm::operator<< ( std::ostream & out,
std::valarray< T > const & v )

operator to print a vector

53 {
54 const int width = 10;
55 const char separator = ' ';
56
57 out.precision(4);
58 for (size_t row = 0; row < v.size(); row++) {
59 out << std::right << std::setw(width) << std::setfill(separator)
60 << v[row];
61 }
62
63 return out;
64}
Here is the call graph for this function:

◆ qr_decompose()

template<typename T >
void qr_algorithm::qr_decompose ( const std::valarray< std::valarray< T > > & A,
std::valarray< std::valarray< T > > * Q,
std::valarray< std::valarray< T > > * R )

Decompose matrix \(A\) using Gram-Schmidt process.

\begin{eqnarray*} \text{given that}\quad A &=& *\left[\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{N-1},\right]\\ \text{where}\quad\mathbf{a}_i &=& \left[a_{0i},a_{1i},a_{2i},\ldots,a_{(M-1)i}\right]^T\quad\ldots\mbox{(column vectors)}\\ \text{then}\quad\mathbf{u}_i &=& \mathbf{a}_i *-\sum_{j=0}^{i-1}\text{proj}_{\mathbf{u}_j}\mathbf{a}_i\\ \mathbf{e}_i &=&\frac{\mathbf{u}_i}{\left|\mathbf{u}_i\right|}\\ Q &=& \begin{bmatrix}\mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_{N-1}\end{bmatrix}\\ R &=& \begin{bmatrix}\langle\mathbf{e}_0\,,\mathbf{a}_0\rangle & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots \\ 0 & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\ 0 & 0 & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}\\ \end{eqnarray*}

Parameters
Ainput matrix to decompose
Qoutput decomposed matrix
Routput decomposed matrix
150 {
151 std::size_t ROWS = A.size(); // number of rows of A
152 std::size_t COLUMNS = A[0].size(); // number of columns of A
153 std::valarray<T> col_vector(ROWS);
154 std::valarray<T> col_vector2(ROWS);
155 std::valarray<T> tmp_vector(ROWS);
156
157 for (int i = 0; i < COLUMNS; i++) {
158 /* for each column => R is a square matrix of NxN */
159 int j;
160 R[0][i] = 0.; /* make R upper triangular */
161
162 /* get corresponding Q vector */
163#ifdef _OPENMP
164// parallelize on threads
165#pragma omp for
166#endif
167 for (j = 0; j < ROWS; j++) {
168 tmp_vector[j] = A[j][i]; /* accumulator for uk */
169 col_vector[j] = A[j][i];
170 }
171 for (j = 0; j < i; j++) {
172 for (int k = 0; k < ROWS; k++) {
173 col_vector2[k] = Q[0][k][j];
174 }
175 col_vector2 = vector_proj(col_vector, col_vector2);
176 tmp_vector -= col_vector2;
177 }
178
179 double mag = vector_mag(tmp_vector);
180
181#ifdef _OPENMP
182// parallelize on threads
183#pragma omp for
184#endif
185 for (j = 0; j < ROWS; j++) Q[0][j][i] = tmp_vector[j] / mag;
186
187 /* compute upper triangular values of R */
188#ifdef _OPENMP
189// parallelize on threads
190#pragma omp for
191#endif
192 for (int kk = 0; kk < ROWS; kk++) {
193 col_vector[kk] = Q[0][kk][i];
194 }
195
196#ifdef _OPENMP
197// parallelize on threads
198#pragma omp for
199#endif
200 for (int k = i; k < COLUMNS; k++) {
201 for (int kk = 0; kk < ROWS; kk++) {
202 col_vector2[kk] = A[kk][k];
203 }
204 R[0][i][k] = (col_vector * col_vector2).sum();
205 }
206 }
207}
double k(double x)
Another test function.
Definition composite_simpson_rule.cpp:117
T sum(const std::vector< std::valarray< T > > &A)
Definition vector_ops.hpp:232
std::valarray< T > vector_proj(const std::valarray< T > &a, const std::valarray< T > &b)
Definition qr_decompose.h:104
double vector_mag(const std::valarray< T > &a)
Definition qr_decompose.h:92
double mag(const std::array< double, 3 > &vec)
Calculates the magnitude of the mathematical vector from it's direction ratios.
Definition vector_cross_product.cpp:83
Here is the call graph for this function:

◆ vector_dot()

template<typename T >
double qr_algorithm::vector_dot ( const std::valarray< T > & a,
const std::valarray< T > & b )
inline

Compute dot product of two vectors of equal lengths

If \(\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\) and \(\vec{b}=\left[b_0,b_1,b_1,...,b_L\right]\) then \(\vec{a}\cdot\vec{b}=\displaystyle\sum_{i=0}^L a_i\times b_i\)

Returns
\(\vec{a}\cdot\vec{b}\)
76 {
77 return (a * b).sum();
78 // could also use following
79 // return std::inner_product(std::begin(a), std::end(a), std::begin(b),
80 // 0.f);
81}

◆ vector_mag()

template<typename T >
double qr_algorithm::vector_mag ( const std::valarray< T > & a)
inline

Compute magnitude of vector.

If \(\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\) then \(\left|\vec{a}\right|=\sqrt{\displaystyle\sum_{i=0}^L a_i^2}\)

Returns
\(\left|\vec{a}\right|\)
92 {
93 double dot = vector_dot(a, a);
94 return std::sqrt(dot);
95}
double vector_dot(const std::valarray< T > &a, const std::valarray< T > &b)
Definition qr_decompose.h:76
T sqrt(T... args)
Here is the call graph for this function:

◆ vector_proj()

template<typename T >
std::valarray< T > qr_algorithm::vector_proj ( const std::valarray< T > & a,
const std::valarray< T > & b )

Compute projection of vector \(\vec{a}\) on \(\vec{b}\) defined as

\[\text{proj}_\vec{b}\vec{a}=\frac{\vec{a}\cdot\vec{b}}{\left|\vec{b}\right|^2}\vec{b}\]

Returns
NULL if error, otherwise pointer to output

check for division by zero using machine epsilon

105 {
106 double num = vector_dot(a, b);
107 double deno = vector_dot(b, b);
108
109 /*! check for division by zero using machine epsilon */
111 std::cerr << "[" << __func__ << "] Possible division by zero\n";
112 return a; // return vector a back
113 }
114
115 double scalar = num / deno;
116
117 return b * scalar;
118}
Here is the call graph for this function: