Compute the greatest common denominator of two integers using iterative form of Euclidean algorithm
More...
#include <iostream>
#include <stdexcept>
Go to the source code of this file.
|
int | gcd (int num1, int num2) |
|
int | main () |
|
Compute the greatest common denominator of two integers using iterative form of Euclidean algorithm
- See also
- gcd_recursive_euclidean.cpp, gcd_of_n_numbers.cpp
Definition in file gcd_iterative_euclidean.cpp.
◆ gcd()
int gcd |
( |
int | num1, |
|
|
int | num2 ) |
algorithm
Definition at line 15 of file gcd_iterative_euclidean.cpp.
15 {
16 if (num1 <= 0 | num2 <= 0) {
17 throw std::domain_error("Euclidean algorithm domain is for ints > 0");
18 }
19
20 if (num1 == num2) {
21 return num1;
22 }
23
24 int base_num = 0;
25 int previous_remainder = 1;
26
27 if (num1 > num2) {
28 base_num = num1;
29 previous_remainder = num2;
30 } else {
31 base_num = num2;
32 previous_remainder = num1;
33 }
34
35 while ((base_num % previous_remainder) != 0) {
36 int old_base = base_num;
37 base_num = previous_remainder;
38 previous_remainder = old_base % previous_remainder;
39 }
40
41 return previous_remainder;
42}
◆ main()
Main function
Definition at line 47 of file gcd_iterative_euclidean.cpp.
47 {
48 std::cout <<
"gcd of 120,7 is " << (
gcd(120, 7)) << std::endl;
49 try {
50 std::cout <<
"gcd of -120,10 is " <<
gcd(-120, 10) << std::endl;
51 } catch (const std::domain_error &e) {
52 std::cout << "Error handling was successful" << std::endl;
53 }
54 std::cout <<
"gcd of 312,221 is " << (
gcd(312, 221)) << std::endl;
55 std::cout <<
"gcd of 289,204 is " << (
gcd(289, 204)) << std::endl;
56
57 return 0;
58}
int gcd(int num1, int num2)