Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
Loading...
Searching...
No Matches
gcd_iterative_euclidean.cpp File Reference

Compute the greatest common denominator of two integers using iterative form of Euclidean algorithm More...

#include <iostream>
#include <stdexcept>
Include dependency graph for gcd_iterative_euclidean.cpp:

Functions

int gcd (int num1, int num2)
 
int main ()
 

Detailed Description

Compute the greatest common denominator of two integers using iterative form of Euclidean algorithm

See also
gcd_recursive_euclidean.cpp, gcd_of_n_numbers.cpp

Function Documentation

◆ gcd()

int gcd ( int num1,
int num2 )

algorithm

15 {
16 if (num1 <= 0 | num2 <= 0) {
17 throw std::domain_error("Euclidean algorithm domain is for ints > 0");
18 }
19
20 if (num1 == num2) {
21 return num1;
22 }
23
24 int base_num = 0;
25 int previous_remainder = 1;
26
27 if (num1 > num2) {
28 base_num = num1;
29 previous_remainder = num2;
30 } else {
31 base_num = num2;
32 previous_remainder = num1;
33 }
34
35 while ((base_num % previous_remainder) != 0) {
36 int old_base = base_num;
37 base_num = previous_remainder;
38 previous_remainder = old_base % previous_remainder;
39 }
40
41 return previous_remainder;
42}

◆ main()

int main ( void )

Main function

47 {
48 std::cout << "gcd of 120,7 is " << (gcd(120, 7)) << std::endl;
49 try {
50 std::cout << "gcd of -120,10 is " << gcd(-120, 10) << std::endl;
51 } catch (const std::domain_error &e) {
52 std::cout << "Error handling was successful" << std::endl;
53 }
54 std::cout << "gcd of 312,221 is " << (gcd(312, 221)) << std::endl;
55 std::cout << "gcd of 289,204 is " << (gcd(289, 204)) << std::endl;
56
57 return 0;
58}
T endl(T... args)
int gcd(int num1, int num2)
Definition gcd_iterative_euclidean.cpp:15
Here is the call graph for this function: