Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
Loading...
Searching...
No Matches
gcd_recursive_euclidean.cpp File Reference

Compute the greatest common denominator of two integers using recursive form of Euclidean algorithm More...

#include <iostream>
Include dependency graph for gcd_recursive_euclidean.cpp:

Functions

int gcd (int num1, int num2)
 
int main ()
 

Detailed Description

Compute the greatest common denominator of two integers using recursive form of Euclidean algorithm

See also
gcd_iterative_euclidean.cpp, gcd_of_n_numbers.cpp

Function Documentation

◆ gcd()

int gcd ( int num1,
int num2 )

algorithm

14 {
15 if (num1 <= 0 | num2 <= 0) {
16 throw std::domain_error("Euclidean algorithm domain is for ints > 0");
17 }
18
19 if (num1 == num2) {
20 return num1;
21 }
22
23 // Everything divides 0
24 if (num1 == 0)
25 return num2;
26 if (num2 == 0)
27 return num1;
28
29 // base case
30 if (num1 == num2)
31 return num1;
32
33 // a is greater
34 if (num1 > num2)
35 return gcd(num1 - num2, num2);
36 return gcd(num1, num2 - num1);
37}
int gcd(int num1, int num2)
Definition gcd_recursive_euclidean.cpp:14
Here is the call graph for this function:

◆ main()

int main ( void )

Main function

42 {
43 std::cout << "gcd of 120,7 is " << (gcd(120, 7)) << std::endl;
44 try {
45 std::cout << "gcd of -120,10 is " << gcd(-120, 10) << std::endl;
46 } catch (const std::domain_error &e) {
47 std::cout << "Error handling was successful" << std::endl;
48 }
49 std::cout << "gcd of 312,221 is " << (gcd(312, 221)) << std::endl;
50 std::cout << "gcd of 289,204 is " << (gcd(289, 204)) << std::endl;
51 return 0;
52}
T endl(T... args)
Here is the call graph for this function: