TheAlgorithms/C++ 1.0.0
All the algorithms implemented in C++
Loading...
Searching...
No Matches
gcd_recursive_euclidean.cpp File Reference

Compute the greatest common denominator of two integers using recursive form of Euclidean algorithm More...

#include <iostream>
Include dependency graph for gcd_recursive_euclidean.cpp:

Go to the source code of this file.

Functions

int gcd (int num1, int num2)
 
int main ()
 

Detailed Description

Compute the greatest common denominator of two integers using recursive form of Euclidean algorithm

See also
gcd_iterative_euclidean.cpp, gcd_of_n_numbers.cpp

Definition in file gcd_recursive_euclidean.cpp.

Function Documentation

◆ gcd()

int gcd ( int num1,
int num2 )

algorithm

Definition at line 14 of file gcd_recursive_euclidean.cpp.

14 {
15 if (num1 <= 0 | num2 <= 0) {
16 throw std::domain_error("Euclidean algorithm domain is for ints > 0");
17 }
18
19 if (num1 == num2) {
20 return num1;
21 }
22
23 // Everything divides 0
24 if (num1 == 0)
25 return num2;
26 if (num2 == 0)
27 return num1;
28
29 // base case
30 if (num1 == num2)
31 return num1;
32
33 // a is greater
34 if (num1 > num2)
35 return gcd(num1 - num2, num2);
36 return gcd(num1, num2 - num1);
37}
int gcd(int num1, int num2)

◆ main()

int main ( void )

Main function

Definition at line 42 of file gcd_recursive_euclidean.cpp.

42 {
43 std::cout << "gcd of 120,7 is " << (gcd(120, 7)) << std::endl;
44 try {
45 std::cout << "gcd of -120,10 is " << gcd(-120, 10) << std::endl;
46 } catch (const std::domain_error &e) {
47 std::cout << "Error handling was successful" << std::endl;
48 }
49 std::cout << "gcd of 312,221 is " << (gcd(312, 221)) << std::endl;
50 std::cout << "gcd of 289,204 is " << (gcd(289, 204)) << std::endl;
51 return 0;
52}