neural_network.activation_functions.swish¶
This script demonstrates the implementation of the Sigmoid Linear Unit (SiLU) or swish function. * https://en.wikipedia.org/wiki/Rectifier_(neural_networks) * https://en.wikipedia.org/wiki/Swish_function
The function takes a vector x of K real numbers as input and returns x * sigmoid(x). Swish is a smooth, non-monotonic function defined as f(x) = x * sigmoid(x). Extensive experiments shows that Swish consistently matches or outperforms ReLU on deep networks applied to a variety of challenging domains such as image classification and machine translation.
This script is inspired by a corresponding research paper. * https://arxiv.org/abs/1710.05941 * https://blog.paperspace.com/swish-activation-function/
Functions¶
|
Mathematical function sigmoid takes a vector x of K real numbers as input and |
|
Implements the Sigmoid Linear Unit (SiLU) or swish function |
|
Parameters: |
Module Contents¶
- neural_network.activation_functions.swish.sigmoid(vector: numpy.ndarray) numpy.ndarray ¶
Mathematical function sigmoid takes a vector x of K real numbers as input and returns 1/ (1 + e^-x). https://en.wikipedia.org/wiki/Sigmoid_function
>>> sigmoid(np.array([-1.0, 1.0, 2.0])) array([0.26894142, 0.73105858, 0.88079708])
- neural_network.activation_functions.swish.sigmoid_linear_unit(vector: numpy.ndarray) numpy.ndarray ¶
Implements the Sigmoid Linear Unit (SiLU) or swish function
- Parameters:
vector (np.ndarray): A numpy array consisting of real values
- Returns:
swish_vec (np.ndarray): The input numpy array, after applying swish
Examples: >>> sigmoid_linear_unit(np.array([-1.0, 1.0, 2.0])) array([-0.26894142, 0.73105858, 1.76159416])
>>> sigmoid_linear_unit(np.array([-2])) array([-0.23840584])
- neural_network.activation_functions.swish.swish(vector: numpy.ndarray, trainable_parameter: int) numpy.ndarray ¶
- Parameters:
vector (np.ndarray): A numpy array consisting of real values trainable_parameter: Use to implement various Swish Activation Functions
- Returns:
swish_vec (np.ndarray): The input numpy array, after applying swish
Examples: >>> swish(np.array([-1.0, 1.0, 2.0]), 2) array([-0.11920292, 0.88079708, 1.96402758])
>>> swish(np.array([-2]), 1) array([-0.23840584])