neural_network.activation_functions.swish

This script demonstrates the implementation of the Sigmoid Linear Unit (SiLU) or swish function. * https://en.wikipedia.org/wiki/Rectifier_(neural_networks) * https://en.wikipedia.org/wiki/Swish_function

The function takes a vector x of K real numbers as input and returns x * sigmoid(x). Swish is a smooth, non-monotonic function defined as f(x) = x * sigmoid(x). Extensive experiments shows that Swish consistently matches or outperforms ReLU on deep networks applied to a variety of challenging domains such as image classification and machine translation.

This script is inspired by a corresponding research paper. * https://arxiv.org/abs/1710.05941 * https://blog.paperspace.com/swish-activation-function/

Functions

sigmoid(→ numpy.ndarray)

Mathematical function sigmoid takes a vector x of K real numbers as input and

sigmoid_linear_unit(→ numpy.ndarray)

Implements the Sigmoid Linear Unit (SiLU) or swish function

swish(→ numpy.ndarray)

Parameters:

Module Contents

neural_network.activation_functions.swish.sigmoid(vector: numpy.ndarray) numpy.ndarray

Mathematical function sigmoid takes a vector x of K real numbers as input and returns 1/ (1 + e^-x). https://en.wikipedia.org/wiki/Sigmoid_function

>>> sigmoid(np.array([-1.0, 1.0, 2.0]))
array([0.26894142, 0.73105858, 0.88079708])
neural_network.activation_functions.swish.sigmoid_linear_unit(vector: numpy.ndarray) numpy.ndarray

Implements the Sigmoid Linear Unit (SiLU) or swish function

Parameters:

vector (np.ndarray): A numpy array consisting of real values

Returns:

swish_vec (np.ndarray): The input numpy array, after applying swish

Examples: >>> sigmoid_linear_unit(np.array([-1.0, 1.0, 2.0])) array([-0.26894142, 0.73105858, 1.76159416])

>>> sigmoid_linear_unit(np.array([-2]))
array([-0.23840584])
neural_network.activation_functions.swish.swish(vector: numpy.ndarray, trainable_parameter: int) numpy.ndarray
Parameters:

vector (np.ndarray): A numpy array consisting of real values trainable_parameter: Use to implement various Swish Activation Functions

Returns:

swish_vec (np.ndarray): The input numpy array, after applying swish

Examples: >>> swish(np.array([-1.0, 1.0, 2.0]), 2) array([-0.11920292, 0.88079708, 1.96402758])

>>> swish(np.array([-2]), 1)
array([-0.23840584])