neural_network.activation_functions.swish ========================================= .. py:module:: neural_network.activation_functions.swish .. autoapi-nested-parse:: This script demonstrates the implementation of the Sigmoid Linear Unit (SiLU) or swish function. * https://en.wikipedia.org/wiki/Rectifier_(neural_networks) * https://en.wikipedia.org/wiki/Swish_function The function takes a vector x of K real numbers as input and returns x * sigmoid(x). Swish is a smooth, non-monotonic function defined as f(x) = x * sigmoid(x). Extensive experiments shows that Swish consistently matches or outperforms ReLU on deep networks applied to a variety of challenging domains such as image classification and machine translation. This script is inspired by a corresponding research paper. * https://arxiv.org/abs/1710.05941 * https://blog.paperspace.com/swish-activation-function/ Functions --------- .. autoapisummary:: neural_network.activation_functions.swish.sigmoid neural_network.activation_functions.swish.sigmoid_linear_unit neural_network.activation_functions.swish.swish Module Contents --------------- .. py:function:: sigmoid(vector: numpy.ndarray) -> numpy.ndarray Mathematical function sigmoid takes a vector x of K real numbers as input and returns 1/ (1 + e^-x). https://en.wikipedia.org/wiki/Sigmoid_function >>> sigmoid(np.array([-1.0, 1.0, 2.0])) array([0.26894142, 0.73105858, 0.88079708]) .. py:function:: sigmoid_linear_unit(vector: numpy.ndarray) -> numpy.ndarray Implements the Sigmoid Linear Unit (SiLU) or swish function Parameters: vector (np.ndarray): A numpy array consisting of real values Returns: swish_vec (np.ndarray): The input numpy array, after applying swish Examples: >>> sigmoid_linear_unit(np.array([-1.0, 1.0, 2.0])) array([-0.26894142, 0.73105858, 1.76159416]) >>> sigmoid_linear_unit(np.array([-2])) array([-0.23840584]) .. py:function:: swish(vector: numpy.ndarray, trainable_parameter: int) -> numpy.ndarray Parameters: vector (np.ndarray): A numpy array consisting of real values trainable_parameter: Use to implement various Swish Activation Functions Returns: swish_vec (np.ndarray): The input numpy array, after applying swish Examples: >>> swish(np.array([-1.0, 1.0, 2.0]), 2) array([-0.11920292, 0.88079708, 1.96402758]) >>> swish(np.array([-2]), 1) array([-0.23840584])