neural_network.back_propagation_neural_network¶
A Framework of Back Propagation Neural Network (BP) model
- Easy to use:
add many layers as you want ! ! !
clearly see how the loss decreasing
- Easy to expand:
more activation functions
more loss functions
more optimization method
Author: Stephen Lee Github : https://github.com/RiptideBo Date: 2017.11.23
Classes¶
Back Propagation Neural Network model |
|
Layers of BP neural network |
Functions¶
|
|
|
Module Contents¶
- class neural_network.back_propagation_neural_network.BPNN¶
Back Propagation Neural Network model
- add_layer(layer)¶
- build()¶
- cal_loss(ydata, ydata_)¶
- plot_loss()¶
- summary()¶
- train(xdata, ydata, train_round, accuracy)¶
- ax_loss¶
- fig_loss¶
- layers = []¶
- train_mse = []¶
- class neural_network.back_propagation_neural_network.DenseLayer(units, activation=None, learning_rate=None, is_input_layer=False)¶
Layers of BP neural network
- back_propagation(gradient)¶
- cal_gradient()¶
- forward_propagation(xdata)¶
- initializer(back_units)¶
- activation = None¶
- bias = None¶
- is_input_layer = False¶
- learn_rate = None¶
- units¶
- weight = None¶
- neural_network.back_propagation_neural_network.example()¶
- neural_network.back_propagation_neural_network.sigmoid(x: numpy.ndarray) numpy.ndarray ¶