Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
Loading...
Searching...
No Matches
ordinary_least_squares_regressor.cpp File Reference

Linear regression example using Ordinary least squares More...

#include <cassert>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <vector>
Include dependency graph for ordinary_least_squares_regressor.cpp:

Functions

template<typename T >
std::ostreamoperator<< (std::ostream &out, std::vector< std::vector< T > > const &v)
 
template<typename T >
std::ostreamoperator<< (std::ostream &out, std::vector< T > const &v)
 
template<typename T >
bool is_square (std::vector< std::vector< T > > const &A)
 
template<typename T >
std::vector< std::vector< T > > operator* (std::vector< std::vector< T > > const &A, std::vector< std::vector< T > > const &B)
 
template<typename T >
std::vector< T > operator* (std::vector< std::vector< T > > const &A, std::vector< T > const &B)
 
template<typename T >
std::vector< float > operator* (float const scalar, std::vector< T > const &A)
 
template<typename T >
std::vector< float > operator* (std::vector< T > const &A, float const scalar)
 
template<typename T >
std::vector< float > operator/ (std::vector< T > const &A, float const scalar)
 
template<typename T >
std::vector< T > operator- (std::vector< T > const &A, std::vector< T > const &B)
 
template<typename T >
std::vector< T > operator+ (std::vector< T > const &A, std::vector< T > const &B)
 
template<typename T >
std::vector< std::vector< float > > get_inverse (std::vector< std::vector< T > > const &A)
 
template<typename T >
std::vector< std::vector< T > > get_transpose (std::vector< std::vector< T > > const &A)
 
template<typename T >
std::vector< float > fit_OLS_regressor (std::vector< std::vector< T > > const &X, std::vector< T > const &Y)
 
template<typename T >
std::vector< float > predict_OLS_regressor (std::vector< std::vector< T > > const &X, std::vector< float > const &beta)
 
void ols_test ()
 
int main ()
 

Detailed Description

Linear regression example using Ordinary least squares

Program that gets the number of data samples and number of features per sample along with output per sample. It applies OLS regression to compute the regression output for additional test data samples.

Author
Krishna Vedala

Function Documentation

◆ fit_OLS_regressor()

template<typename T >
std::vector< float > fit_OLS_regressor ( std::vector< std::vector< T > > const & X,
std::vector< T > const & Y )

Perform Ordinary Least Squares curve fit. This operation is defined as

\[\beta = \left(X^TXX^T\right)Y\]

Parameters
Xfeature matrix with rows representing sample vector of features
Yknown regression value for each sample
Returns
fitted regression model polynomial coefficients
322 {
323 // NxF
325 for (size_t i = 0; i < X2.size(); i++) {
326 // add Y-intercept -> Nx(F+1)
327 X2[i].push_back(1);
328 }
329 // (F+1)xN
331 // (F+1)x(F+1)
333 // (F+1)xN
334 std::vector<std::vector<float>> out = tmp * Xt;
335 // cout << endl
336 // << "Projection matrix: " << X2 * out << endl;
337
338 // Fx1,1 -> (F+1)^th element is the independent constant
339 return out * Y;
340}
std::vector< std::vector< T > > get_transpose(std::vector< std::vector< T > > const &A)
Definition ordinary_least_squares_regressor.cpp:300
std::vector< std::vector< float > > get_inverse(std::vector< std::vector< T > > const &A)
Definition ordinary_least_squares_regressor.cpp:226
T push_back(T... args)
T size(T... args)
Here is the call graph for this function:

◆ get_inverse()

template<typename T >
std::vector< std::vector< float > > get_inverse ( std::vector< std::vector< T > > const & A)

Get matrix inverse using Row-trasnformations. Given matrix must be a square and non-singular.

Returns
inverse matrix
227 {
228 // Assuming A is square matrix
229 size_t N = A.size();
230
232 for (size_t row = 0; row < N; row++) {
233 // preallocatae a resultant identity matrix
234 inverse[row] = std::vector<float>(N);
235 for (size_t col = 0; col < N; col++) {
236 inverse[row][col] = (row == col) ? 1.f : 0.f;
237 }
238 }
239
240 if (!is_square(A)) {
241 std::cerr << "A must be a square matrix!" << std::endl;
242 return inverse;
243 }
244
245 // preallocatae a temporary matrix identical to A
247 for (size_t row = 0; row < N; row++) {
249 for (size_t col = 0; col < N; col++) {
250 v[col] = static_cast<float>(A[row][col]);
251 }
252 temp[row] = v;
253 }
254
255 // start transformations
256 for (size_t row = 0; row < N; row++) {
257 for (size_t row2 = row; row2 < N && temp[row][row] == 0; row2++) {
258 // this to ensure diagonal elements are not 0
259 temp[row] = temp[row] + temp[row2];
260 inverse[row] = inverse[row] + inverse[row2];
261 }
262
263 for (size_t col2 = row; col2 < N && temp[row][row] == 0; col2++) {
264 // this to further ensure diagonal elements are not 0
265 for (size_t row2 = 0; row2 < N; row2++) {
266 temp[row2][row] = temp[row2][row] + temp[row2][col2];
267 inverse[row2][row] = inverse[row2][row] + inverse[row2][col2];
268 }
269 }
270
271 if (temp[row][row] == 0) {
272 // Probably a low-rank matrix and hence singular
273 std::cerr << "Low-rank matrix, no inverse!" << std::endl;
274 return inverse;
275 }
276
277 // set diagonal to 1
278 auto divisor = static_cast<float>(temp[row][row]);
279 temp[row] = temp[row] / divisor;
280 inverse[row] = inverse[row] / divisor;
281 // Row transformations
282 for (size_t row2 = 0; row2 < N; row2++) {
283 if (row2 == row) {
284 continue;
285 }
286 float factor = temp[row2][row];
287 temp[row2] = temp[row2] - factor * temp[row];
288 inverse[row2] = inverse[row2] - factor * inverse[row];
289 }
290 }
291
292 return inverse;
293}
constexpr uint32_t N
A struct to represent sparse table for min() as their invariant function, for the given array A....
Definition sparse_table.cpp:47
T endl(T... args)
bool is_square(std::vector< std::vector< T > > const &A)
Definition ordinary_least_squares_regressor.cpp:59
Here is the call graph for this function:

◆ get_transpose()

template<typename T >
std::vector< std::vector< T > > get_transpose ( std::vector< std::vector< T > > const & A)

matrix transpose

Returns
resultant matrix
301 {
303
304 for (size_t row = 0; row < A[0].size(); row++) {
305 std::vector<T> v(A.size());
306 for (size_t col = 0; col < A.size(); col++) v[col] = A[col][row];
307
308 result[row] = v;
309 }
310 return result;
311}
uint64_t result(uint64_t n)
Definition fibonacci_sum.cpp:76

◆ is_square()

template<typename T >
bool is_square ( std::vector< std::vector< T > > const & A)
inline

function to check if given matrix is a square matrix

Returns
1 if true, 0 if false
59 {
60 // Assuming A is square matrix
61 size_t N = A.size();
62 for (size_t i = 0; i < N; i++) {
63 if (A[i].size() != N) {
64 return false;
65 }
66 }
67 return true;
68}

◆ main()

int main ( void )

main function

423 {
424 ols_test();
425
426 size_t N = 0, F = 0;
427
428 std::cout << "Enter number of features: ";
429 // number of features = columns
430 std::cin >> F;
431 std::cout << "Enter number of samples: ";
432 // number of samples = rows
433 std::cin >> N;
434
437
439 << "Enter training data. Per sample, provide features and one output."
440 << std::endl;
441
442 for (size_t rows = 0; rows < N; rows++) {
444 std::cout << "Sample# " << rows + 1 << ": ";
445 for (size_t cols = 0; cols < F; cols++) {
446 // get the F features
447 std::cin >> v[cols];
448 }
449 data[rows] = v;
450 // get the corresponding output
451 std::cin >> Y[rows];
452 }
453
455 std::cout << std::endl << std::endl << "beta:" << beta << std::endl;
456
457 size_t T = 0;
458 std::cout << "Enter number of test samples: ";
459 // number of test sample inputs
460 std::cin >> T;
462 // vector<float> Y2(T);
463
464 for (size_t rows = 0; rows < T; rows++) {
465 std::cout << "Sample# " << rows + 1 << ": ";
467 for (size_t cols = 0; cols < F; cols++) std::cin >> v[cols];
468 data2[rows] = v;
469 }
470
471 std::vector<float> out = predict_OLS_regressor(data2, beta);
472 for (size_t rows = 0; rows < T; rows++) std::cout << out[rows] << std::endl;
473
474 return 0;
475}
int data[MAX]
test data
Definition hash_search.cpp:24
void ols_test()
Definition ordinary_least_squares_regressor.cpp:369
std::vector< float > fit_OLS_regressor(std::vector< std::vector< T > > const &X, std::vector< T > const &Y)
Definition ordinary_least_squares_regressor.cpp:321
std::vector< float > predict_OLS_regressor(std::vector< std::vector< T > > const &X, std::vector< float > const &beta)
Definition ordinary_least_squares_regressor.cpp:352
Here is the call graph for this function:

◆ ols_test()

void ols_test ( )

Self test checks

369 {
370 int F = 3, N = 5;
371
372 /* test function = x^2 -5 */
373 std::cout << "Test 1 (quadratic function)....";
374 // create training data set with features = x, x^2, x^3
376 {{-5, 25, -125}, {-1, 1, -1}, {0, 0, 0}, {1, 1, 1}, {6, 36, 216}});
377 // create corresponding outputs
378 std::vector<float> Y1({20, -4, -5, -4, 31});
379 // perform regression modelling
380 std::vector<float> beta1 = fit_OLS_regressor(data1, Y1);
381 // create test data set with same features = x, x^2, x^3
383 {{-2, 4, -8}, {2, 4, 8}, {-10, 100, -1000}, {10, 100, 1000}});
384 // expected regression outputs
385 std::vector<float> expected1({-1, -1, 95, 95});
386 // predicted regression outputs
387 std::vector<float> out1 = predict_OLS_regressor(test_data1, beta1);
388 // compare predicted results are within +-0.01 limit of expected
389 for (size_t rows = 0; rows < out1.size(); rows++) {
390 assert(std::abs(out1[rows] - expected1[rows]) < 0.01);
391 }
392 std::cout << "passed\n";
393
394 /* test function = x^3 + x^2 - 100 */
395 std::cout << "Test 2 (cubic function)....";
396 // create training data set with features = x, x^2, x^3
398 {{-5, 25, -125}, {-1, 1, -1}, {0, 0, 0}, {1, 1, 1}, {6, 36, 216}});
399 // create corresponding outputs
400 std::vector<float> Y2({-200, -100, -100, 98, 152});
401 // perform regression modelling
402 std::vector<float> beta2 = fit_OLS_regressor(data2, Y2);
403 // create test data set with same features = x, x^2, x^3
405 {{-2, 4, -8}, {2, 4, 8}, {-10, 100, -1000}, {10, 100, 1000}});
406 // expected regression outputs
407 std::vector<float> expected2({-104, -88, -1000, 1000});
408 // predicted regression outputs
409 std::vector<float> out2 = predict_OLS_regressor(test_data2, beta2);
410 // compare predicted results are within +-0.01 limit of expected
411 for (size_t rows = 0; rows < out2.size(); rows++) {
412 assert(std::abs(out2[rows] - expected2[rows]) < 0.01);
413 }
414 std::cout << "passed\n";
415
416 std::cout << std::endl; // ensure test results are displayed on screen
417 // (flush stdout)
418}
Here is the call graph for this function:

◆ operator*() [1/4]

template<typename T >
std::vector< float > operator* ( float const scalar,
std::vector< T > const & A )

pre-multiplication of a vector by a scalar

Returns
resultant vector
138 {
139 // Number of rows in A
140 size_t N_A = A.size();
141
143
144 for (size_t row = 0; row < N_A; row++) {
145 result[row] += A[row] * static_cast<float>(scalar);
146 }
147
148 return result;
149}
Here is the call graph for this function:

◆ operator*() [2/4]

template<typename T >
std::vector< std::vector< T > > operator* ( std::vector< std::vector< T > > const & A,
std::vector< std::vector< T > > const & B )

Matrix multiplication such that if A is size (mxn) and B is of size (pxq) then the multiplication is defined only when n = p and the resultant matrix is of size (mxq)

Returns
resultant matrix
79 {
80 // Number of rows in A
81 size_t N_A = A.size();
82 // Number of columns in B
83 size_t N_B = B[0].size();
84
86
87 if (A[0].size() != B.size()) {
88 std::cerr << "Number of columns in A != Number of rows in B ("
89 << A[0].size() << ", " << B.size() << ")" << std::endl;
90 return result;
91 }
92
93 for (size_t row = 0; row < N_A; row++) {
94 std::vector<T> v(N_B);
95 for (size_t col = 0; col < N_B; col++) {
96 v[col] = static_cast<T>(0);
97 for (size_t j = 0; j < B.size(); j++) {
98 v[col] += A[row][j] * B[j][col];
99 }
100 }
101 result[row] = v;
102 }
103
104 return result;
105}
Here is the call graph for this function:

◆ operator*() [3/4]

template<typename T >
std::vector< T > operator* ( std::vector< std::vector< T > > const & A,
std::vector< T > const & B )

multiplication of a matrix with a column vector

Returns
resultant vector
113 {
114 // Number of rows in A
115 size_t N_A = A.size();
116
118
119 if (A[0].size() != B.size()) {
120 std::cerr << "Number of columns in A != Number of rows in B ("
121 << A[0].size() << ", " << B.size() << ")" << std::endl;
122 return result;
123 }
124
125 for (size_t row = 0; row < N_A; row++) {
126 result[row] = static_cast<T>(0);
127 for (size_t j = 0; j < B.size(); j++) result[row] += A[row][j] * B[j];
128 }
129
130 return result;
131}
Here is the call graph for this function:

◆ operator*() [4/4]

template<typename T >
std::vector< float > operator* ( std::vector< T > const & A,
float const scalar )

post-multiplication of a vector by a scalar

Returns
resultant vector
156 {
157 // Number of rows in A
158 size_t N_A = A.size();
159
161
162 for (size_t row = 0; row < N_A; row++) {
163 result[row] = A[row] * static_cast<float>(scalar);
164 }
165
166 return result;
167}
Here is the call graph for this function:

◆ operator+()

template<typename T >
std::vector< T > operator+ ( std::vector< T > const & A,
std::vector< T > const & B )

addition of two vectors of identical lengths

Returns
resultant vector
204 {
205 // Number of rows in A
206 size_t N = A.size();
207
209
210 if (B.size() != N) {
211 std::cerr << "Vector dimensions shouldbe identical!" << std::endl;
212 return A;
213 }
214
215 for (size_t row = 0; row < N; row++) result[row] = A[row] + B[row];
216
217 return result;
218}
Here is the call graph for this function:

◆ operator-()

template<typename T >
std::vector< T > operator- ( std::vector< T > const & A,
std::vector< T > const & B )

subtraction of two vectors of identical lengths

Returns
resultant vector
183 {
184 // Number of rows in A
185 size_t N = A.size();
186
188
189 if (B.size() != N) {
190 std::cerr << "Vector dimensions shouldbe identical!" << std::endl;
191 return A;
192 }
193
194 for (size_t row = 0; row < N; row++) result[row] = A[row] - B[row];
195
196 return result;
197}
Here is the call graph for this function:

◆ operator/()

template<typename T >
std::vector< float > operator/ ( std::vector< T > const & A,
float const scalar )

division of a vector by a scalar

Returns
resultant vector
174 {
175 return (1.f / scalar) * A;
176}

◆ operator<<() [1/2]

template<typename T >
std::ostream & operator<< ( std::ostream & out,
std::vector< std::vector< T > > const & v )

operator to print a matrix

23 {
24 const int width = 10;
25 const char separator = ' ';
26
27 for (size_t row = 0; row < v.size(); row++) {
28 for (size_t col = 0; col < v[row].size(); col++) {
29 out << std::left << std::setw(width) << std::setfill(separator)
30 << v[row][col];
31 }
32 out << std::endl;
33 }
34
35 return out;
36}
T left(T... args)
T setfill(T... args)
T setw(T... args)
Here is the call graph for this function:

◆ operator<<() [2/2]

template<typename T >
std::ostream & operator<< ( std::ostream & out,
std::vector< T > const & v )

operator to print a vector

42 {
43 const int width = 15;
44 const char separator = ' ';
45
46 for (size_t row = 0; row < v.size(); row++) {
47 out << std::left << std::setw(width) << std::setfill(separator)
48 << v[row];
49 }
50
51 return out;
52}
Here is the call graph for this function:

◆ predict_OLS_regressor()

template<typename T >
std::vector< float > predict_OLS_regressor ( std::vector< std::vector< T > > const & X,
std::vector< float > const & beta )

Given data and OLS model coeffficients, predict regression estimates. This operation is defined as

\[y_{\text{row}=i} = \sum_{j=\text{columns}}\beta_j\cdot X_{i,j}\]

Parameters
Xfeature matrix with rows representing sample vector of features
betafitted regression model
Returns
vector with regression values for each sample
354 {
356
357 for (size_t rows = 0; rows < X.size(); rows++) {
358 // -> start with constant term
359 result[rows] = beta[X[0].size()];
360 for (size_t cols = 0; cols < X[0].size(); cols++) {
361 result[rows] += beta[cols] * X[rows][cols];
362 }
363 }
364 // Nx1
365 return result;
366}