Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
Loading...
Searching...
No Matches
median_search.cpp File Reference

Implementation of Median search algorithm. @cases from here More...

#include <iostream>
#include <algorithm>
#include <vector>
#include <cassert>
Include dependency graph for median_search.cpp:

Namespaces

namespace  search
 for std::vector
 
namespace  median_search
 

Functions

int search::median_search::median_of_medians (const std::vector< int > &A, const int &idx)
 
void test ()
 
int main ()
 

Detailed Description

Implementation of Median search algorithm. @cases from here

Given an array A[1,...,n] of n numbers and an index i, where 1 ≤ i ≤ n, find the i-th smallest element of A. median_of_medians(A, i): #divide A into sublists of len 5 sublists = [A[j:j+5] for j in range(0, len(A), 5)] medians = [sorted(sublist)[len(sublist)/2] for sublist in sublists] if len(medians) <= 5: pivot = sorted(medians)[len(medians)/2] else: #the pivot is the median of the medians pivot = median_of_medians(medians, len(medians)/2) #partitioning step low = [j for j in A if j < pivot] high = [j for j in A if j > pivot] k = len(low) if i < k: return median_of_medians(low,i) elif i > k: return median_of_medians(high,i-k-1) else: #pivot = k return pivot

Note
this algorithm implements median search for only arrays which have distinct elements

Here are some example lists you can use to see how the algorithm works A = [1,2,3,4,5,1000,8,9,99] (Contain Unique Elements) B = [1,2,3,4,5,6] (Contains Unique Elements) print median_of_medians(A, 0) #should be 1 print median_of_medians(A,7) #should be 99 print median_of_medians(B,4) #should be 5

Author
Unknown author
Sushil Kumar

Function Documentation

◆ main()

int main ( void )

Main function

129{
130 test();
131 int n = 0;
132 std::cout << "Enter Size of Array: ";
133 std::cin >> n;
134 std::vector<int> a(n);
135 std::cout << "Enter Array: ";
136 for(int i = 0; i < n; i++){
137 std::cin >> a[i];
138 }
139 std::cout << "Median: "; // Median defination: https://en.wikipedia.org/wiki/Median
140 int x = search::median_search::median_of_medians(a, (n - 1) / 2);
141 if(n % 2 == 0){
143 std::cout << (float(x) + float(y))/2.0;
144 }
145 else{
146 std::cout << x;
147 }
148 std::cout << "\nTo find i-th smallest element ";
149 std::cout << "\nEnter i: ";
150 int idx = 0;
151 std::cin >> idx;
152 idx--;
153 std::cout << idx + 1<< "-th smallest element: " << search::median_search::median_of_medians(a, idx) << '\n';
154 return 0;
155}
int median_of_medians(const std::vector< int > &A, const int &idx)
Definition median_search.cpp:62
void test()
Definition median_search.cpp:107
Here is the call graph for this function:

◆ median_of_medians()

int search::median_search::median_of_medians ( const std::vector< int > & A,
const int & idx )

This function search the element in an array for the given index.

Parameters
Aarray where numbers are saved
idxcurrent index in array
Returns
corresponding element which we want to search.
62 {
63 int pivot = 0; // initialized with zero
64 std::vector<int> a(A.begin(), A.end());
66 int r = a.size();
67 for(int i = 0; i < r; i += 5){
68 std::sort(a.begin() + i, a.begin() + std::min(r, i + 5));
69 int mid = (i + std::min(r, i + 5)) / 2;
70 m.push_back(a[mid]);
71 }
72 int sz = int(m.size());
73 if(sz <= 5){
74 std::sort(m.begin(), m.end());
75 pivot = m[(sz- 1) / 2];
76 }
77 else{
78 pivot = median_of_medians(m, idx);
79 }
82 for(int i = 0; i < r; i++){
83 if(a[i] < pivot){
84 low.push_back(a[i]);
85 }
86 else if(a[i] > pivot){
87 high.push_back(a[i]);
88 }
89 }
90 int k = int(low.size());
91 if(idx < k){
92 return median_of_medians(low, idx);
93 }
94 else if(idx > k){
95 return median_of_medians(high, idx-k-1);
96 }
97 else{
98 return pivot;
99 }
100}
T begin(T... args)
double k(double x)
Another test function.
Definition composite_simpson_rule.cpp:117
T end(T... args)
T min(T... args)
T push_back(T... args)
T size(T... args)
T sort(T... args)
Here is the call graph for this function:

◆ test()

void test ( )

Function to test above algorithm

107 {
108 std::vector<int> A{25,21,98,100,76,22,43,60,89,87};
109 int i = 3;
110 assert(A[6] == search::median_search::median_of_medians(A, i)); // A[6] = 43, is the fourth smallest element.
111 std::cout << "test case:1 passed\n";
112
113 std::vector<int> B{1,2,3,4,5,6};
114 int j = 4;
115 assert(B[4] == search::median_search::median_of_medians(B, j)); // B[4] = 5, is the fifth smallest element.
116 std::cout << "test case:2 passed\n";
117
118 std::vector<int> C{1,2,3,4,5,1000,8,9,99};
119 int k = 3;
120 assert(C[3] == search::median_search::median_of_medians(C, k)); // C[3] = 4, is the fourth smallest element.
121 std::cout << "test case:3 passed\n";
122 std::cout << "--All tests passed--\n";
123}