Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
Loading...
Searching...
No Matches
fast_fourier_transform.cpp File Reference

A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). More...

#include <cassert>
#include <cmath>
#include <complex>
#include <iostream>
#include <vector>
Include dependency graph for fast_fourier_transform.cpp:

Namespaces

namespace  numerical_methods
 for assert
 

Functions

std::complex< double > * numerical_methods::FastFourierTransform (std::complex< double > *p, uint8_t n)
 FastFourierTransform is a recursive function which returns list of complex numbers.
 
static void test ()
 Self-test implementations.
 
int main (int argc, char const *argv[])
 Main function.
 

Detailed Description

A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT).

This algorithm has application in use case scenario where a user wants to find points of a function in a short time by just using the coefficients of the polynomial function. It can be also used to find inverse fourier transform by just switching the value of omega. Time complexity this algorithm computes the DFT in O(nlogn) time in comparison to traditional O(n^2).

Author
Ameya Chawla

Function Documentation

◆ main()

int main ( int argc,
char const * argv[] )

Main function.

Parameters
argccommandline argument count (ignored)
argvcommandline array of arguments (ignored) calls automated test function to test the working of fast fourier transform.
Returns
0 on exit
162 {
163 test(); // run self-test implementations
164 // with 2 defined test cases
165 return 0;
166}
static void test()
Self-test implementations.
Definition fast_fourier_transform.cpp:104
Here is the call graph for this function:

◆ test()

static void test ( )
static

Self-test implementations.

Declaring two test cases and checking for the error in predicted and true value is less than 0.000000000001.

Returns
void

Test case 1

Test case 2

True Answer for test case 1

True Answer for test case 2

Temporary variable used to delete memory location of o1

Temporary variable used to delete memory location of o2

Comparing for both real and imaginary values for test case 1

Comparing for both real and imaginary values for test case 2

104 {
105 /* descriptions of the following test */
106
107 auto *t1 = new std::complex<double>[2]; /// Test case 1
108 auto *t2 = new std::complex<double>[4]; /// Test case 2
109
110 t1[0] = {1, 0};
111 t1[1] = {2, 0};
112 t2[0] = {1, 0};
113 t2[1] = {2, 0};
114 t2[2] = {3, 0};
115 t2[3] = {4, 0};
116
117 uint8_t n1 = 2;
118 uint8_t n2 = 4;
120 {3, 0}, {-1, 0}}; /// True Answer for test case 1
121
123 {10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2
124
127 o1; /// Temporary variable used to delete memory location of o1
130 o2; /// Temporary variable used to delete memory location of o2
131 for (uint8_t i = 0; i < n1; i++) {
132 assert((r1[i].real() - o1->real() < 0.000000000001) &&
133 (r1[i].imag() - o1->imag() <
134 0.000000000001)); /// Comparing for both real and imaginary
135 /// values for test case 1
136 o1++;
137 }
138
139 for (uint8_t i = 0; i < n2; i++) {
140 assert((r2[i].real() - o2->real() < 0.000000000001) &&
141 (r2[i].imag() - o2->imag() <
142 0.000000000001)); /// Comparing for both real and imaginary
143 /// values for test case 2
144 o2++;
145 }
146
147 delete[] t1;
148 delete[] t2;
149 delete[] t3;
150 delete[] t4;
151 std::cout << "All tests have successfully passed!\n";
152}
T imag(T... args)
std::complex< double > * FastFourierTransform(std::complex< double > *p, uint8_t n)
FastFourierTransform is a recursive function which returns list of complex numbers.
Definition fast_fourier_transform.cpp:41
T real(T... args)
Here is the call graph for this function: