TheAlgorithms/C++ 1.0.0
All the algorithms implemented in C++
Loading...
Searching...
No Matches
ode_midpoint_euler.cpp File Reference

Solve a multivariable first order ordinary differential equation (ODEs) using midpoint Euler method More...

#include <cmath>
#include <ctime>
#include <fstream>
#include <iostream>
#include <valarray>
Include dependency graph for ode_midpoint_euler.cpp:

Go to the source code of this file.

Functions

void problem (const double &x, std::valarray< double > *y, std::valarray< double > *dy)
 Problem statement for a system with first-order differential equations. Updates the system differential variables.
 
void exact_solution (const double &x, std::valarray< double > *y)
 Exact solution of the problem. Used for solution comparison.
 
void midpoint_euler_step (const double dx, const double &x, std::valarray< double > *y, std::valarray< double > *dy)
 Compute next step approximation using the midpoint-Euler method.
 
double midpoint_euler (double dx, double x0, double x_max, std::valarray< double > *y, bool save_to_file=false)
 Compute approximation using the midpoint-Euler method in the given limits.
 
void save_exact_solution (const double &X0, const double &X_MAX, const double &step_size, const std::valarray< double > &Y0)
 
int main (int argc, char *argv[])
 

Detailed Description

Solve a multivariable first order ordinary differential equation (ODEs) using midpoint Euler method

Authors
Krishna Vedala

The ODE being solved is:

\begin{eqnarray*} \dot{u} &=& v\\ \dot{v} &=& -\omega^2 u\\ \omega &=& 1\\ [x_0, u_0, v_0] &=& [0,1,0]\qquad\ldots\text{(initial values)} \end{eqnarray*}

The exact solution for the above problem is:

\begin{eqnarray*} u(x) &=& \cos(x)\\ v(x) &=& -\sin(x)\\ \end{eqnarray*}

The computation results are stored to a text file midpoint_euler.csv and the exact soltuion results in exact.csv for comparison. Implementation solution

To implement Van der Pol oscillator, change the problem function to:

const double mu = 2.0;
dy[0] = y[1];
dy[1] = mu * (1.f - y[0] * y[0]) * y[1] - y[0];
See also
ode_forward_euler.cpp, ode_semi_implicit_euler.cpp

Definition in file ode_midpoint_euler.cpp.

Function Documentation

◆ exact_solution()

void exact_solution ( const double & x,
std::valarray< double > * y )

Exact solution of the problem. Used for solution comparison.

Parameters
[in]xindependent variable
[in,out]ydependent variable

Definition at line 66 of file ode_midpoint_euler.cpp.

66 {
67 y[0][0] = std::cos(x);
68 y[0][1] = -std::sin(x);
69}

◆ main()

int main ( int argc,
char * argv[] )

Main Function

Definition at line 192 of file ode_midpoint_euler.cpp.

192 {
193 double X0 = 0.f; /* initial value of x0 */
194 double X_MAX = 10.F; /* upper limit of integration */
195 std::valarray<double> Y0 = {1.f, 0.f}; /* initial value Y = y(x = x_0) */
196 double step_size;
197
198 if (argc == 1) {
199 std::cout << "\nEnter the step size: ";
200 std::cin >> step_size;
201 } else {
202 // use commandline argument as independent variable step size
203 step_size = std::atof(argv[1]);
204 }
205
206 // get approximate solution
207 double total_time = midpoint_euler(step_size, X0, X_MAX, &Y0, true);
208 std::cout << "\tTime = " << total_time << " ms\n";
209
210 /* compute exact solution for comparion */
211 save_exact_solution(X0, X_MAX, step_size, Y0);
212
213 return 0;
214}
double midpoint_euler(double dx, double x0, double x_max, std::valarray< double > *y, bool save_to_file=false)
Compute approximation using the midpoint-Euler method in the given limits.
void save_exact_solution(const double &X0, const double &X_MAX, const double &step_size, const std::valarray< double > &Y0)

◆ problem()

void problem ( const double & x,
std::valarray< double > * y,
std::valarray< double > * dy )

Problem statement for a system with first-order differential equations. Updates the system differential variables.

Note
This function can be updated to and ode of any order.
Parameters
[in]xindependent variable(s)
[in,out]ydependent variable(s)
[in,out]dyfirst-derivative of dependent variable(s)

Definition at line 53 of file ode_midpoint_euler.cpp.

54 {
55 const double omega = 1.F; // some const for the problem
56 dy[0][0] = y[0][1]; // x dot
57 dy[0][1] = -omega * omega * y[0][0]; // y dot
58}

◆ save_exact_solution()

void save_exact_solution ( const double & X0,
const double & X_MAX,
const double & step_size,
const std::valarray< double > & Y0 )

Function to compute and save exact solution for comparison

Parameters
[in]X0initial value of independent variable
[in]X_MAXfinal value of independent variable
[in]step_sizeindependent variable step size
[in]Y0initial values of dependent variables

Definition at line 156 of file ode_midpoint_euler.cpp.

158 {
159 double x = X0;
160 std::valarray<double> y = Y0;
161
162 std::ofstream fp("exact.csv", std::ostream::out);
163 if (!fp.is_open()) {
164 std::perror("Error! ");
165 return;
166 }
167 std::cout << "Finding exact solution\n";
168
169 std::clock_t t1 = std::clock();
170 do {
171 fp << x << ",";
172 for (int i = 0; i < y.size() - 1; i++) {
173 fp << y[i] << ",";
174 }
175 fp << y[y.size() - 1] << "\n";
176
177 exact_solution(x, &y);
178
179 x += step_size;
180 } while (x <= X_MAX);
181
182 std::clock_t t2 = std::clock();
183 double total_time = static_cast<double>(t2 - t1) / CLOCKS_PER_SEC;
184 std::cout << "\tTime = " << total_time << " ms\n";
185
186 fp.close();
187}
void exact_solution(const double &x, std::valarray< double > *y)
Exact solution of the problem. Used for solution comparison.