Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
|
Solve a multivariable first order ordinary differential equation (ODEs) using semi implicit Euler method More...
#include <cmath>
#include <ctime>
#include <fstream>
#include <iostream>
#include <valarray>
Functions | |
void | problem (const double &x, std::valarray< double > *y, std::valarray< double > *dy) |
Problem statement for a system with first-order differential equations. Updates the system differential variables. | |
void | exact_solution (const double &x, std::valarray< double > *y) |
Exact solution of the problem. Used for solution comparison. | |
void | semi_implicit_euler_step (const double dx, const double &x, std::valarray< double > *y, std::valarray< double > *dy) |
Compute next step approximation using the semi-implicit-Euler method. | |
double | semi_implicit_euler (double dx, double x0, double x_max, std::valarray< double > *y, bool save_to_file=false) |
Compute approximation using the semi-implicit-Euler method in the given limits. | |
void | save_exact_solution (const double &X0, const double &X_MAX, const double &step_size, const std::valarray< double > &Y0) |
int | main (int argc, char *argv[]) |
Solve a multivariable first order ordinary differential equation (ODEs) using semi implicit Euler method
The ODE being solved is:
\begin{eqnarray*} \dot{u} &=& v\\ \dot{v} &=& -\omega^2 u\\ \omega &=& 1\\ [x_0, u_0, v_0] &=& [0,1,0]\qquad\ldots\text{(initial values)} \end{eqnarray*}
The exact solution for the above problem is:
\begin{eqnarray*} u(x) &=& \cos(x)\\ v(x) &=& -\sin(x)\\ \end{eqnarray*}
The computation results are stored to a text file semi_implicit_euler.csv
and the exact soltuion results in exact.csv
for comparison.
To implement Van der Pol oscillator, change the problem function to:
void exact_solution | ( | const double & | x, |
std::valarray< double > * | y ) |
int main | ( | int | argc, |
char * | argv[] ) |
Main Function
void problem | ( | const double & | x, |
std::valarray< double > * | y, | ||
std::valarray< double > * | dy ) |
Problem statement for a system with first-order differential equations. Updates the system differential variables.
[in] | x | independent variable(s) |
[in,out] | y | dependent variable(s) |
[in,out] | dy | first-derivative of dependent variable(s) |
void save_exact_solution | ( | const double & | X0, |
const double & | X_MAX, | ||
const double & | step_size, | ||
const std::valarray< double > & | Y0 ) |
Function to compute and save exact solution for comparison
[in] | X0 | initial value of independent variable |
[in] | X_MAX | final value of independent variable |
[in] | step_size | independent variable step size |
[in] | Y0 | initial values of dependent variables |