Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
Loading...
Searching...
No Matches
machine_learning::neural_network::NeuralNetwork Class Reference
Collaboration diagram for machine_learning::neural_network::NeuralNetwork:
[legend]

Public Member Functions

 NeuralNetwork ()=default
 
 NeuralNetwork (const std::vector< std::pair< int, std::string > > &config)
 
 NeuralNetwork (const NeuralNetwork &model)=default
 
 ~NeuralNetwork ()=default
 
NeuralNetworkoperator= (const NeuralNetwork &model)=default
 
 NeuralNetwork (NeuralNetwork &&)=default
 
NeuralNetworkoperator= (NeuralNetwork &&)=default
 
std::pair< std::vector< std::vector< std::valarray< double > > >, std::vector< std::vector< std::valarray< double > > > > get_XY_from_csv (const std::string &file_name, const bool &last_label, const bool &normalize, const int &slip_lines=1)
 
std::vector< std::valarray< double > > single_predict (const std::vector< std::valarray< double > > &X)
 
std::vector< std::vector< std::valarray< double > > > batch_predict (const std::vector< std::vector< std::valarray< double > > > &X)
 
void fit (const std::vector< std::vector< std::valarray< double > > > &X_, const std::vector< std::vector< std::valarray< double > > > &Y_, const int &epochs=100, const double &learning_rate=0.01, const size_t &batch_size=32, const bool &shuffle=true)
 
void fit_from_csv (const std::string &file_name, const bool &last_label, const int &epochs, const double &learning_rate, const bool &normalize, const int &slip_lines=1, const size_t &batch_size=32, const bool &shuffle=true)
 
void evaluate (const std::vector< std::vector< std::valarray< double > > > &X, const std::vector< std::vector< std::valarray< double > > > &Y)
 
void evaluate_from_csv (const std::string &file_name, const bool &last_label, const bool &normalize, const int &slip_lines=1)
 
void save_model (const std::string &_file_name)
 
NeuralNetwork load_model (const std::string &file_name)
 
void summary ()
 

Private Member Functions

 NeuralNetwork (const std::vector< std::pair< int, std::string > > &config, const std::vector< std::vector< std::valarray< double > > > &kernels)
 
std::vector< std::vector< std::valarray< double > > > __detailed_single_prediction (const std::vector< std::valarray< double > > &X)
 

Private Attributes

std::vector< neural_network::layers::DenseLayerlayers
 

Detailed Description

NeuralNetwork class is implements MLP. This class is used by actual user to create and train networks.

Constructor & Destructor Documentation

◆ NeuralNetwork() [1/5]

machine_learning::neural_network::NeuralNetwork::NeuralNetwork ( const std::vector< std::pair< int, std::string > > & config,
const std::vector< std::vector< std::valarray< double > > > & kernels )
inlineprivate

Private Constructor for class NeuralNetwork. This constructor is used internally to load model.

Parameters
configvector containing pair (neurons, activation)
kernelsvector containing all pretrained kernels
258 {
259 // First layer should not have activation
260 if (config.begin()->second != "none") {
261 std::cerr << "ERROR (" << __func__ << ") : ";
263 << "First layer can't have activation other than none got "
264 << config.begin()->second;
266 std::exit(EXIT_FAILURE);
267 }
268 // Network should have atleast two layers
269 if (config.size() <= 1) {
270 std::cerr << "ERROR (" << __func__ << ") : ";
271 std::cerr << "Invalid size of network, ";
272 std::cerr << "Atleast two layers are required";
273 std::exit(EXIT_FAILURE);
274 }
275 // Reconstructing all pretrained layers
276 for (size_t i = 0; i < config.size(); i++) {
277 layers.emplace_back(neural_network::layers::DenseLayer(
278 config[i].first, config[i].second, kernels[i]));
279 }
280 std::cout << "INFO: Network constructed successfully" << std::endl;
281 }
T begin(T... args)
T endl(T... args)
T exit(T... args)
This namespace contains layers used in MLP.
T size(T... args)
Here is the call graph for this function:

◆ NeuralNetwork() [2/5]

machine_learning::neural_network::NeuralNetwork::NeuralNetwork ( )
default

Default Constructor for class NeuralNetwork. This constructor is used to create empty variable of type NeuralNetwork class.

◆ NeuralNetwork() [3/5]

machine_learning::neural_network::NeuralNetwork::NeuralNetwork ( const std::vector< std::pair< int, std::string > > & config)
inlineexplicit

Constructor for class NeuralNetwork. This constructor is used by user.

Parameters
configvector containing pair (neurons, activation)
314 {
315 // First layer should not have activation
316 if (config.begin()->second != "none") {
317 std::cerr << "ERROR (" << __func__ << ") : ";
319 << "First layer can't have activation other than none got "
320 << config.begin()->second;
322 std::exit(EXIT_FAILURE);
323 }
324 // Network should have atleast two layers
325 if (config.size() <= 1) {
326 std::cerr << "ERROR (" << __func__ << ") : ";
327 std::cerr << "Invalid size of network, ";
328 std::cerr << "Atleast two layers are required";
329 std::exit(EXIT_FAILURE);
330 }
331 // Separately creating first layer so it can have unit matrix
332 // as kernel.
333 layers.push_back(neural_network::layers::DenseLayer(
334 config[0].first, config[0].second,
335 {config[0].first, config[0].first}, false));
336 // Creating remaining layers
337 for (size_t i = 1; i < config.size(); i++) {
338 layers.push_back(neural_network::layers::DenseLayer(
339 config[i].first, config[i].second,
340 {config[i - 1].first, config[i].first}, true));
341 }
342 std::cout << "INFO: Network constructed successfully" << std::endl;
343 }
Here is the call graph for this function:

◆ NeuralNetwork() [4/5]

machine_learning::neural_network::NeuralNetwork::NeuralNetwork ( const NeuralNetwork & model)
default

Copy Constructor for class NeuralNetwork.

Parameters
modelinstance of class to be copied.

◆ ~NeuralNetwork()

machine_learning::neural_network::NeuralNetwork::~NeuralNetwork ( )
default

Destructor for class NeuralNetwork.

◆ NeuralNetwork() [5/5]

machine_learning::neural_network::NeuralNetwork::NeuralNetwork ( NeuralNetwork && )
default

Move constructor for class NeuralNetwork

Member Function Documentation

◆ __detailed_single_prediction()

std::vector< std::vector< std::valarray< double > > > machine_learning::neural_network::NeuralNetwork::__detailed_single_prediction ( const std::vector< std::valarray< double > > & X)
inlineprivate

Private function to get detailed predictions (i.e. activated neuron values). This function is used in backpropagation, single predict and batch predict.

Parameters
Xinput vector
289 {
291 std::vector<std::valarray<double>> current_pass = X;
292 details.emplace_back(X);
293 for (const auto &l : layers) {
294 current_pass = multiply(current_pass, l.kernel);
295 current_pass = apply_function(current_pass, l.activation_function);
296 details.emplace_back(current_pass);
297 }
298 return details;
299 }
double l(double x)
Another test function.
Definition composite_simpson_rule.cpp:119
T emplace_back(T... args)
std::vector< std::valarray< T > > multiply(const std::vector< std::valarray< T > > &A, const std::vector< std::valarray< T > > &B)
Definition vector_ops.hpp:460
std::vector< std::valarray< T > > apply_function(const std::vector< std::valarray< T > > &A, T(*func)(const T &))
Definition vector_ops.hpp:329
Here is the call graph for this function:

◆ batch_predict()

std::vector< std::vector< std::valarray< double > > > machine_learning::neural_network::NeuralNetwork::batch_predict ( const std::vector< std::vector< std::valarray< double > > > & X)
inline

Function to get prediction of model on batch

Parameters
Xarray of feature vectors
Returns
returns predicted values as vector
465 {
466 // Store predicted values
468 X.size());
469 for (size_t i = 0; i < X.size(); i++) { // For every sample
470 // Push predicted values
471 predicted_batch[i] = this->single_predict(X[i]);
472 }
473 return predicted_batch; // Return predicted values
474 }
std::vector< std::valarray< double > > single_predict(const std::vector< std::valarray< double > > &X)
Definition neural_network.cpp:451
Here is the call graph for this function:

◆ evaluate()

void machine_learning::neural_network::NeuralNetwork::evaluate ( const std::vector< std::vector< std::valarray< double > > > & X,
const std::vector< std::vector< std::valarray< double > > > & Y )
inline

Function to evaluate model on supplied data

Parameters
Xarray of feature vectors (input data)
Yarray of target values (label)
607 {
608 std::cout << "INFO: Evaluation Started" << std::endl;
609 double acc = 0, loss = 0; // initialize performance metrics with zero
610 for (size_t i = 0; i < X.size(); i++) { // For every sample in input
611 // Get predictions
613 this->single_predict(X[i]);
614 // If predicted class is correct
615 if (argmax(pred) == argmax(Y[i])) {
616 acc += 1; // Increment accuracy
617 }
618 // Calculating loss - Mean Squared Error
619 loss += sum(apply_function((Y[i] - pred),
620 neural_network::util_functions::square) *
621 0.5);
622 }
623 acc /= X.size(); // Averaging accuracy
624 loss /= X.size(); // Averaging loss
625 // Prinitng performance of the model
626 std::cout << "Evaluation: Loss: " << loss;
627 std::cout << ", Accuracy: " << acc << std::endl;
628 return;
629 }
size_t argmax(const std::vector< std::valarray< T > > &A)
Definition vector_ops.hpp:307
T sum(const std::vector< std::valarray< T > > &A)
Definition vector_ops.hpp:232
Here is the call graph for this function:

◆ evaluate_from_csv()

void machine_learning::neural_network::NeuralNetwork::evaluate_from_csv ( const std::string & file_name,
const bool & last_label,
const bool & normalize,
const int & slip_lines = 1 )
inline

Function to evaluate model on data stored in csv file

Parameters
file_namecsv file name
last_labelflag for whether label is in first or last column
normalizeflag for whether to normalize data
slip_linesnumber of lines to skip
639 {
640 // Getting training data from csv file
641 auto data =
642 this->get_XY_from_csv(file_name, last_label, normalize, slip_lines);
643 // Evaluating model
644 this->evaluate(data.first, data.second);
645 return;
646 }
std::pair< std::vector< std::vector< std::valarray< double > > >, std::vector< std::vector< std::valarray< double > > > > get_XY_from_csv(const std::string &file_name, const bool &last_label, const bool &normalize, const int &slip_lines=1)
Definition neural_network.cpp:382
void evaluate(const std::vector< std::vector< std::valarray< double > > > &X, const std::vector< std::vector< std::valarray< double > > > &Y)
Definition neural_network.cpp:606
int data[MAX]
test data
Definition hash_search.cpp:24
Here is the call graph for this function:

◆ fit()

void machine_learning::neural_network::NeuralNetwork::fit ( const std::vector< std::vector< std::valarray< double > > > & X_,
const std::vector< std::vector< std::valarray< double > > > & Y_,
const int & epochs = 100,
const double & learning_rate = 0.01,
const size_t & batch_size = 32,
const bool & shuffle = true )
inline

Function to fit model on supplied data

Parameters
Xarray of feature vectors
Yarray of target values
epochsnumber of epochs (default = 100)
learning_ratelearning rate (default = 0.01)
batch_sizebatch size for gradient descent (default = 32)
shuffleflag for whether to shuffle data (default = true)
488 {
490 // Both label and input data should have same size
491 if (X.size() != Y.size()) {
492 std::cerr << "ERROR (" << __func__ << ") : ";
493 std::cerr << "X and Y in fit have different sizes" << std::endl;
494 std::exit(EXIT_FAILURE);
495 }
496 std::cout << "INFO: Training Started" << std::endl;
497 for (int epoch = 1; epoch <= epochs; epoch++) { // For every epoch
498 // Shuffle X and Y if flag is set
499 if (shuffle) {
500 equal_shuffle(X, Y);
501 }
502 auto start =
504 double loss = 0,
505 acc = 0; // Initialize performance metrics with zero
506 // For each starting index of batch
507 for (size_t batch_start = 0; batch_start < X.size();
508 batch_start += batch_size) {
509 for (size_t i = batch_start;
510 i < std::min(X.size(), batch_start + batch_size); i++) {
511 std::vector<std::valarray<double>> grad, cur_error,
512 predicted;
513 auto activations = this->__detailed_single_prediction(X[i]);
514 // Gradients vector to store gradients for all layers
515 // They will be averaged and applied to kernel
517 gradients.resize(this->layers.size());
518 // First initialize gradients to zero
519 for (size_t i = 0; i < gradients.size(); i++) {
521 gradients[i], get_shape(this->layers[i].kernel));
522 }
523 predicted = activations.back(); // Predicted vector
524 cur_error = predicted - Y[i]; // Absoulute error
525 // Calculating loss with MSE
526 loss += sum(apply_function(
527 cur_error, neural_network::util_functions::square));
528 // If prediction is correct
529 if (argmax(predicted) == argmax(Y[i])) {
530 acc += 1;
531 }
532 // For every layer (except first) starting from last one
533 for (size_t j = this->layers.size() - 1; j >= 1; j--) {
534 // Backpropogating errors
535 cur_error = hadamard_product(
536 cur_error,
538 activations[j + 1],
539 this->layers[j].dactivation_function));
540 // Calculating gradient for current layer
541 grad = multiply(transpose(activations[j]), cur_error);
542 // Change error according to current kernel values
543 cur_error = multiply(cur_error,
544 transpose(this->layers[j].kernel));
545 // Adding gradient values to collection of gradients
546 gradients[j] = gradients[j] + grad / double(batch_size);
547 }
548 // Applying gradients
549 for (size_t j = this->layers.size() - 1; j >= 1; j--) {
550 // Updating kernel (aka weights)
551 this->layers[j].kernel = this->layers[j].kernel -
552 gradients[j] * learning_rate;
553 }
554 }
555 }
556 auto stop =
557 std::chrono::high_resolution_clock::now(); // Stoping the clock
558 // Calculate time taken by epoch
559 auto duration =
561 start);
562 loss /= X.size(); // Averaging loss
563 acc /= X.size(); // Averaging accuracy
564 std::cout.precision(4); // set output precision to 4
565 // Printing training stats
566 std::cout << "Training: Epoch " << epoch << '/' << epochs;
567 std::cout << ", Loss: " << loss;
568 std::cout << ", Accuracy: " << acc;
569 std::cout << ", Taken time: " << duration.count() / 1e6
570 << " seconds";
572 }
573 return;
574 }
std::vector< std::vector< std::valarray< double > > > __detailed_single_prediction(const std::vector< std::valarray< double > > &X)
Definition neural_network.cpp:289
T duration_cast(T... args)
T min(T... args)
Various activation functions used in Neural network.
std::vector< std::valarray< T > > transpose(const std::vector< std::valarray< T > > &A)
Definition vector_ops.hpp:382
std::pair< size_t, size_t > get_shape(const std::vector< std::valarray< T > > &A)
Definition vector_ops.hpp:247
void zeroes_initialization(std::vector< std::valarray< T > > &A, const std::pair< size_t, size_t > &shape)
Definition vector_ops.hpp:213
std::vector< std::valarray< T > > hadamard_product(const std::vector< std::valarray< T > > &A, const std::vector< std::valarray< T > > &B)
Definition vector_ops.hpp:494
void equal_shuffle(std::vector< std::vector< std::valarray< T > > > &A, std::vector< std::vector< std::valarray< T > > > &B)
Definition vector_ops.hpp:136
T resize(T... args)
Here is the call graph for this function:

◆ fit_from_csv()

void machine_learning::neural_network::NeuralNetwork::fit_from_csv ( const std::string & file_name,
const bool & last_label,
const int & epochs,
const double & learning_rate,
const bool & normalize,
const int & slip_lines = 1,
const size_t & batch_size = 32,
const bool & shuffle = true )
inline

Function to fit model on data stored in csv file

Parameters
file_namecsv file name
last_labelflag for whether label is in first or last column
epochsnumber of epochs
learning_ratelearning rate
normalizeflag for whether to normalize data
slip_linesnumber of lines to skip
batch_sizebatch size for gradient descent (default = 32)
shuffleflag for whether to shuffle data (default = true)
591 {
592 // Getting training data from csv file
593 auto data =
594 this->get_XY_from_csv(file_name, last_label, normalize, slip_lines);
595 // Fit the model on training data
596 this->fit(data.first, data.second, epochs, learning_rate, batch_size,
597 shuffle);
598 return;
599 }
void fit(const std::vector< std::vector< std::valarray< double > > > &X_, const std::vector< std::vector< std::valarray< double > > > &Y_, const int &epochs=100, const double &learning_rate=0.01, const size_t &batch_size=32, const bool &shuffle=true)
Definition neural_network.cpp:485
Here is the call graph for this function:

◆ get_XY_from_csv()

std::pair< std::vector< std::vector< std::valarray< double > > >, std::vector< std::vector< std::valarray< double > > > > machine_learning::neural_network::NeuralNetwork::get_XY_from_csv ( const std::string & file_name,
const bool & last_label,
const bool & normalize,
const int & slip_lines = 1 )
inline

Function to get X and Y from csv file (where X = data, Y = label)

Parameters
file_namecsv file name
last_labelflag for whether label is in first or last column
normalizeflag for whether to normalize data
slip_linesnumber of lines to skip
Returns
returns pair of X and Y
383 {
384 std::ifstream in_file; // Ifstream to read file
385 in_file.open(file_name.c_str(), std::ios::in); // Open file
386 // If there is any problem in opening file
387 if (!in_file.is_open()) {
388 std::cerr << "ERROR (" << __func__ << ") : ";
389 std::cerr << "Unable to open file: " << file_name << std::endl;
390 std::exit(EXIT_FAILURE);
391 }
393 Y; // To store X and Y
394 std::string line; // To store each line
395 // Skip lines
396 for (int i = 0; i < slip_lines; i++) {
397 std::getline(in_file, line, '\n'); // Ignore line
398 }
399 // While file has information
400 while (!in_file.eof() && std::getline(in_file, line, '\n')) {
402 y_data; // To store single sample and label
403 std::stringstream ss(line); // Constructing stringstream from line
404 std::string token; // To store each token in line (seprated by ',')
405 while (std::getline(ss, token, ',')) { // For each token
406 // Insert numerical value of token in x_data
407 x_data = insert_element(x_data, std::stod(token));
408 }
409 // If label is in last column
410 if (last_label) {
411 y_data.resize(this->layers.back().neurons);
412 // If task is classification
413 if (y_data.size() > 1) {
414 y_data[x_data[x_data.size() - 1]] = 1;
415 }
416 // If task is regrssion (of single value)
417 else {
418 y_data[0] = x_data[x_data.size() - 1];
419 }
420 x_data = pop_back(x_data); // Remove label from x_data
421 } else {
422 y_data.resize(this->layers.back().neurons);
423 // If task is classification
424 if (y_data.size() > 1) {
425 y_data[x_data[x_data.size() - 1]] = 1;
426 }
427 // If task is regrssion (of single value)
428 else {
429 y_data[0] = x_data[x_data.size() - 1];
430 }
431 x_data = pop_front(x_data); // Remove label from x_data
432 }
433 // Push collected X_data and y_data in X and Y
434 X.push_back({x_data});
435 Y.push_back({y_data});
436 }
437 // Normalize training data if flag is set
438 if (normalize) {
439 // Scale data between 0 and 1 using min-max scaler
440 X = minmax_scaler(X, 0.01, 1.0);
441 }
442 in_file.close(); // Closing file
443 return make_pair(X, Y); // Return pair of X and Y
444 }
T c_str(T... args)
T close(T... args)
T eof(T... args)
T getline(T... args)
T is_open(T... args)
T make_pair(T... args)
std::valarray< T > insert_element(const std::valarray< T > &A, const T &ele)
Definition vector_ops.hpp:85
std::valarray< T > pop_front(const std::valarray< T > &A)
Definition vector_ops.hpp:102
std::vector< std::vector< std::valarray< T > > > minmax_scaler(const std::vector< std::vector< std::valarray< T > > > &A, const T &low, const T &high)
Definition vector_ops.hpp:269
std::valarray< T > pop_back(const std::valarray< T > &A)
Definition vector_ops.hpp:119
T open(T... args)
T push_back(T... args)
T stod(T... args)
Here is the call graph for this function:

◆ load_model()

NeuralNetwork machine_learning::neural_network::NeuralNetwork::load_model ( const std::string & file_name)
inline

Function to load earlier saved model.

Parameters
file_namefile from which model will be loaded (*.model)
Returns
instance of NeuralNetwork class with pretrained weights
732 {
733 std::ifstream in_file; // Ifstream to read file
734 in_file.open(file_name.c_str()); // Openinig file
735 // If there is any problem in opening file
736 if (!in_file.is_open()) {
737 std::cerr << "ERROR (" << __func__ << ") : ";
738 std::cerr << "Unable to open file: " << file_name << std::endl;
739 std::exit(EXIT_FAILURE);
740 }
741 std::vector<std::pair<int, std::string>> config; // To store config
743 kernels; // To store pretrained kernels
744 // Loading model from saved file format
745 size_t total_layers = 0;
746 in_file >> total_layers;
747 for (size_t i = 0; i < total_layers; i++) {
748 int neurons = 0;
749 std::string activation;
750 size_t shape_a = 0, shape_b = 0;
752 in_file >> neurons >> activation >> shape_a >> shape_b;
753 for (size_t r = 0; r < shape_a; r++) {
754 std::valarray<double> row(shape_b);
755 for (size_t c = 0; c < shape_b; c++) {
756 in_file >> row[c];
757 }
758 kernel.push_back(row);
759 }
760 config.emplace_back(make_pair(neurons, activation));
761 ;
762 kernels.emplace_back(kernel);
763 }
764 std::cout << "INFO: Model loaded successfully" << std::endl;
765 in_file.close(); // Closing file
766 return NeuralNetwork(
767 config, kernels); // Return instance of NeuralNetwork class
768 }
Here is the call graph for this function:

◆ operator=() [1/2]

NeuralNetwork & machine_learning::neural_network::NeuralNetwork::operator= ( const NeuralNetwork & model)
default

Copy assignment operator for class NeuralNetwork

◆ operator=() [2/2]

NeuralNetwork & machine_learning::neural_network::NeuralNetwork::operator= ( NeuralNetwork && )
default

Move assignment operator for class NeuralNetwork

◆ save_model()

void machine_learning::neural_network::NeuralNetwork::save_model ( const std::string & _file_name)
inline

Function to save current model.

Parameters
file_namefile name to save model (*.model)

Format in which model is saved:

total_layers neurons(1st neural_network::layers::DenseLayer) activation_name(1st neural_network::layers::DenseLayer) kernel_shape(1st neural_network::layers::DenseLayer) kernel_values neurons(Nth neural_network::layers::DenseLayer) activation_name(Nth neural_network::layers::DenseLayer) kernel_shape(Nth neural_network::layers::DenseLayer) kernel_value

For Example, pretrained model with 3 layers:

 3
 4 none
 4 4
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1
 6 relu
 4 6
 -1.88963 -3.61165 1.30757 -0.443906 -2.41039 -2.69653
 -0.684753 0.0891452 0.795294 -2.39619 2.73377 0.318202
 -2.91451 -4.43249 -0.804187 2.51995 -6.97524 -1.07049
 -0.571531 -1.81689 -1.24485 1.92264 -2.81322 1.01741
 3 sigmoid
 6 3
 0.390267 -0.391703 -0.0989607
 0.499234 -0.564539 -0.28097
 0.553386 -0.153974 -1.92493
 -2.01336 -0.0219682 1.44145
 1.72853 -0.465264 -0.705373
 -0.908409 -0.740547 0.376416
 
652 {
653 std::string file_name = _file_name;
654 // Adding ".model" extension if it is not already there in name
655 if (file_name.find(".model") == file_name.npos) {
656 file_name += ".model";
657 }
658 std::ofstream out_file; // Ofstream to write in file
659 // Open file in out|trunc mode
660 out_file.open(file_name.c_str(),
661 std::ofstream::out | std::ofstream::trunc);
662 // If there is any problem in opening file
663 if (!out_file.is_open()) {
664 std::cerr << "ERROR (" << __func__ << ") : ";
665 std::cerr << "Unable to open file: " << file_name << std::endl;
666 std::exit(EXIT_FAILURE);
667 }
668 /**
669 Format in which model is saved:
670
671 total_layers
672 neurons(1st neural_network::layers::DenseLayer) activation_name(1st
673 neural_network::layers::DenseLayer) kernel_shape(1st
674 neural_network::layers::DenseLayer) kernel_values
675 .
676 .
677 .
678 neurons(Nth neural_network::layers::DenseLayer) activation_name(Nth
679 neural_network::layers::DenseLayer) kernel_shape(Nth
680 neural_network::layers::DenseLayer) kernel_value
681
682 For Example, pretrained model with 3 layers:
683 <pre>
684 3
685 4 none
686 4 4
687 1 0 0 0
688 0 1 0 0
689 0 0 1 0
690 0 0 0 1
691 6 relu
692 4 6
693 -1.88963 -3.61165 1.30757 -0.443906 -2.41039 -2.69653
694 -0.684753 0.0891452 0.795294 -2.39619 2.73377 0.318202
695 -2.91451 -4.43249 -0.804187 2.51995 -6.97524 -1.07049
696 -0.571531 -1.81689 -1.24485 1.92264 -2.81322 1.01741
697 3 sigmoid
698 6 3
699 0.390267 -0.391703 -0.0989607
700 0.499234 -0.564539 -0.28097
701 0.553386 -0.153974 -1.92493
702 -2.01336 -0.0219682 1.44145
703 1.72853 -0.465264 -0.705373
704 -0.908409 -0.740547 0.376416
705 </pre>
706 */
707 // Saving model in the same format
708 out_file << layers.size();
709 out_file << std::endl;
710 for (const auto &layer : this->layers) {
711 out_file << layer.neurons << ' ' << layer.activation << std::endl;
712 const auto shape = get_shape(layer.kernel);
713 out_file << shape.first << ' ' << shape.second << std::endl;
714 for (const auto &row : layer.kernel) {
715 for (const auto &val : row) {
716 out_file << val << ' ';
717 }
718 out_file << std::endl;
719 }
720 }
721 std::cout << "INFO: Model saved successfully with name : ";
722 std::cout << file_name << std::endl;
723 out_file.close(); // Closing file
724 return;
725 }
T find(T... args)
Here is the call graph for this function:

◆ single_predict()

std::vector< std::valarray< double > > machine_learning::neural_network::NeuralNetwork::single_predict ( const std::vector< std::valarray< double > > & X)
inline

Function to get prediction of model on single sample.

Parameters
Xarray of feature vectors
Returns
returns predictions as vector
452 {
453 // Get activations of all layers
455 // Return activations of last layer (actual predicted values)
456 return activations.back();
457 }
Here is the call graph for this function:

◆ summary()

void machine_learning::neural_network::NeuralNetwork::summary ( )
inline

Function to print summary of the network.

773 {
774 // Printing Summary
776 << "==============================================================="
777 << std::endl;
778 std::cout << "\t\t+ MODEL SUMMARY +\t\t\n";
780 << "==============================================================="
781 << std::endl;
782 for (size_t i = 1; i <= layers.size(); i++) { // For every layer
783 std::cout << i << ")";
784 std::cout << " Neurons : "
785 << layers[i - 1].neurons; // number of neurons
786 std::cout << ", Activation : "
787 << layers[i - 1].activation; // activation
788 std::cout << ", kernel Shape : "
789 << get_shape(layers[i - 1].kernel); // kernel shape
791 }
793 << "==============================================================="
794 << std::endl;
795 return;
796 }
Here is the call graph for this function:

The documentation for this class was generated from the following file: