TheAlgorithms/C++ 1.0.0
All the algorithms implemented in C++
Loading...
Searching...
No Matches
matrix_chain_multiplication.cpp
1#include <climits>
2#include <iostream>
3using namespace std;
4
5#define MAX 10
6
7// dp table to store the solution for already computed sub problems
8int dp[MAX][MAX];
9
10// Function to find the most efficient way to multiply the given sequence of
11// matrices
12int MatrixChainMultiplication(int dim[], int i, int j) {
13 // base case: one matrix
14 if (j <= i + 1)
15 return 0;
16
17 // stores minimum number of scalar multiplications (i.e., cost)
18 // needed to compute the matrix M[i+1]...M[j] = M[i..j]
19 int min = INT_MAX;
20
21 // if dp[i][j] is not calculated (calculate it!!)
22
23 if (dp[i][j] == 0) {
24 // take the minimum over each possible position at which the
25 // sequence of matrices can be split
26
27 for (int k = i + 1; k <= j - 1; k++) {
28 // recur for M[i+1]..M[k] to get a i x k matrix
29 int cost = MatrixChainMultiplication(dim, i, k);
30
31 // recur for M[k+1]..M[j] to get a k x j matrix
32 cost += MatrixChainMultiplication(dim, k, j);
33
34 // cost to multiply two (i x k) and (k x j) matrix
35 cost += dim[i] * dim[k] * dim[j];
36
37 if (cost < min)
38 min = cost; // store the minimum cost
39 }
40 dp[i][j] = min;
41 }
42
43 // return min cost to multiply M[j+1]..M[j]
44 return dp[i][j];
45}
46
47// main function
48int main() {
49 // Matrix i has Dimensions dim[i-1] & dim[i] for i=1..n
50 // input is 10 x 30 matrix, 30 x 5 matrix, 5 x 60 matrix
51 int dim[] = {10, 30, 5, 60};
52 int n = sizeof(dim) / sizeof(dim[0]);
53
54 // Function Calling: MatrixChainMultiplications(dimensions_array, starting,
55 // ending);
56
57 cout << "Minimum cost is " << MatrixChainMultiplication(dim, 0, n - 1)
58 << "\n";
59
60 return 0;
61}
double k(double x)
Another test function.
int main()
Main function.
for std::vector