maths.spearman_rank_correlation_coefficient¶
Functions¶
|
Assigns ranks to elements in the array. |
|
Calculates Spearman's rank correlation coefficient. |
Module Contents¶
- maths.spearman_rank_correlation_coefficient.assign_ranks(data: collections.abc.Sequence[float]) list[int] ¶
Assigns ranks to elements in the array.
- Parameters:
data – List of floats.
- Returns:
List of ints representing the ranks.
Example: >>> assign_ranks([3.2, 1.5, 4.0, 2.7, 5.1]) [3, 1, 4, 2, 5]
>>> assign_ranks([10.5, 8.1, 12.4, 9.3, 11.0]) [3, 1, 5, 2, 4]
- maths.spearman_rank_correlation_coefficient.calculate_spearman_rank_correlation(variable_1: collections.abc.Sequence[float], variable_2: collections.abc.Sequence[float]) float ¶
Calculates Spearman’s rank correlation coefficient.
- Parameters:
variable_1 – List of floats representing the first variable.
variable_2 – List of floats representing the second variable.
- Returns:
Spearman’s rank correlation coefficient.
Example Usage:
>>> x = [1, 2, 3, 4, 5] >>> y = [5, 4, 3, 2, 1] >>> calculate_spearman_rank_correlation(x, y) -1.0
>>> x = [1, 2, 3, 4, 5] >>> y = [2, 4, 6, 8, 10] >>> calculate_spearman_rank_correlation(x, y) 1.0
>>> x = [1, 2, 3, 4, 5] >>> y = [5, 1, 2, 9, 5] >>> calculate_spearman_rank_correlation(x, y) 0.6