maths.spearman_rank_correlation_coefficient =========================================== .. py:module:: maths.spearman_rank_correlation_coefficient Functions --------- .. autoapisummary:: maths.spearman_rank_correlation_coefficient.assign_ranks maths.spearman_rank_correlation_coefficient.calculate_spearman_rank_correlation Module Contents --------------- .. py:function:: assign_ranks(data: collections.abc.Sequence[float]) -> list[int] Assigns ranks to elements in the array. :param data: List of floats. :return: List of ints representing the ranks. Example: >>> assign_ranks([3.2, 1.5, 4.0, 2.7, 5.1]) [3, 1, 4, 2, 5] >>> assign_ranks([10.5, 8.1, 12.4, 9.3, 11.0]) [3, 1, 5, 2, 4] .. py:function:: calculate_spearman_rank_correlation(variable_1: collections.abc.Sequence[float], variable_2: collections.abc.Sequence[float]) -> float Calculates Spearman's rank correlation coefficient. :param variable_1: List of floats representing the first variable. :param variable_2: List of floats representing the second variable. :return: Spearman's rank correlation coefficient. Example Usage: >>> x = [1, 2, 3, 4, 5] >>> y = [5, 4, 3, 2, 1] >>> calculate_spearman_rank_correlation(x, y) -1.0 >>> x = [1, 2, 3, 4, 5] >>> y = [2, 4, 6, 8, 10] >>> calculate_spearman_rank_correlation(x, y) 1.0 >>> x = [1, 2, 3, 4, 5] >>> y = [5, 1, 2, 9, 5] >>> calculate_spearman_rank_correlation(x, y) 0.6