maths.numerical_analysis.square_root

Functions

fx(→ float)

fx_derivative(→ float)

get_initial_point(→ float)

square_root_iterative(→ float)

Square root approximated using Newton's method.

Module Contents

maths.numerical_analysis.square_root.fx(x: float, a: float) float
maths.numerical_analysis.square_root.fx_derivative(x: float) float
maths.numerical_analysis.square_root.get_initial_point(a: float) float
maths.numerical_analysis.square_root.square_root_iterative(a: float, max_iter: int = 9999, tolerance: float = 1e-14) float

Square root approximated using Newton’s method. https://en.wikipedia.org/wiki/Newton%27s_method

>>> all(abs(square_root_iterative(i) - math.sqrt(i)) <= 1e-14 for i in range(500))
True
>>> square_root_iterative(-1)
Traceback (most recent call last):
    ...
ValueError: math domain error
>>> square_root_iterative(4)
2.0
>>> square_root_iterative(3.2)
1.788854381999832
>>> square_root_iterative(140)
11.832159566199232