maths.numerical_analysis.simpson_rule

Numerical integration or quadrature for a smooth function f with known values at x_i

This method is the classical approach of summing ‘Equally Spaced Abscissas’

method 2: “Simpson Rule”

Functions

f(x)

main()

make_points(a, b, h)

method_2(→ float)

Calculate the definite integral of a function using Simpson's Rule.

Module Contents

maths.numerical_analysis.simpson_rule.f(x)
maths.numerical_analysis.simpson_rule.main()
maths.numerical_analysis.simpson_rule.make_points(a, b, h)
maths.numerical_analysis.simpson_rule.method_2(boundary: list[int], steps: int) float

Calculate the definite integral of a function using Simpson’s Rule. :param boundary: A list containing the lower and upper bounds of integration. :param steps: The number of steps or resolution for the integration. :return: The approximate integral value.

>>> round(method_2([0, 2, 4], 10), 10)
2.6666666667
>>> round(method_2([2, 0], 10), 10)
-0.2666666667
>>> round(method_2([-2, -1], 10), 10)
2.172
>>> round(method_2([0, 1], 10), 10)
0.3333333333
>>> round(method_2([0, 2], 10), 10)
2.6666666667
>>> round(method_2([0, 2], 100), 10)
2.5621226667
>>> round(method_2([0, 1], 1000), 10)
0.3320026653
>>> round(method_2([0, 2], 0), 10)
Traceback (most recent call last):
    ...
ZeroDivisionError: Number of steps must be greater than zero
>>> round(method_2([0, 2], -10), 10)
Traceback (most recent call last):
    ...
ZeroDivisionError: Number of steps must be greater than zero