maths.numerical_analysis.integration_by_simpson_approx¶
Author : Syed Faizan ( 3rd Year IIIT Pune ) Github : faizan2700
Purpose : You have one function f(x) which takes float integer and returns float you have to integrate the function in limits a to b. The approximation proposed by Thomas Simpson in 1743 is one way to calculate integration.
( read article : https://cp-algorithms.com/num_methods/simpson-integration.html )
simpson_integration() takes function,lower_limit=a,upper_limit=b,precision and returns the integration of function in given limit.
Attributes¶
Functions¶
|
|
|
Args: |
Module Contents¶
- maths.numerical_analysis.integration_by_simpson_approx.f(x: float) float ¶
- maths.numerical_analysis.integration_by_simpson_approx.simpson_integration(function, a: float, b: float, precision: int = 4) float ¶
- Args:
function : the function which’s integration is desired a : the lower limit of integration b : upper limit of integration precision : precision of the result,error required default is 4
- Returns:
result : the value of the approximated integration of function in range a to b
- Raises:
AssertionError: function is not callable AssertionError: a is not float or integer AssertionError: function should return float or integer AssertionError: b is not float or integer AssertionError: precision is not positive integer
>>> simpson_integration(lambda x : x*x,1,2,3) 2.333
>>> simpson_integration(lambda x : x*x,'wrong_input',2,3) Traceback (most recent call last): ... AssertionError: a should be float or integer your input : wrong_input
>>> simpson_integration(lambda x : x*x,1,'wrong_input',3) Traceback (most recent call last): ... AssertionError: b should be float or integer your input : wrong_input
>>> simpson_integration(lambda x : x*x,1,2,'wrong_input') Traceback (most recent call last): ... AssertionError: precision should be positive integer your input : wrong_input >>> simpson_integration('wrong_input',2,3,4) Traceback (most recent call last): ... AssertionError: the function(object) passed should be callable your input : ...
>>> simpson_integration(lambda x : x*x,3.45,3.2,1) -2.8
>>> simpson_integration(lambda x : x*x,3.45,3.2,0) Traceback (most recent call last): ... AssertionError: precision should be positive integer your input : 0
>>> simpson_integration(lambda x : x*x,3.45,3.2,-1) Traceback (most recent call last): ... AssertionError: precision should be positive integer your input : -1
- maths.numerical_analysis.integration_by_simpson_approx.N_STEPS = 1000¶