maths.numerical_analysis.integration_by_simpson_approx ====================================================== .. py:module:: maths.numerical_analysis.integration_by_simpson_approx .. autoapi-nested-parse:: Author : Syed Faizan ( 3rd Year IIIT Pune ) Github : faizan2700 Purpose : You have one function f(x) which takes float integer and returns float you have to integrate the function in limits a to b. The approximation proposed by Thomas Simpson in 1743 is one way to calculate integration. ( read article : https://cp-algorithms.com/num_methods/simpson-integration.html ) simpson_integration() takes function,lower_limit=a,upper_limit=b,precision and returns the integration of function in given limit. Attributes ---------- .. autoapisummary:: maths.numerical_analysis.integration_by_simpson_approx.N_STEPS Functions --------- .. autoapisummary:: maths.numerical_analysis.integration_by_simpson_approx.f maths.numerical_analysis.integration_by_simpson_approx.simpson_integration Module Contents --------------- .. py:function:: f(x: float) -> float .. py:function:: simpson_integration(function, a: float, b: float, precision: int = 4) -> float Args: function : the function which's integration is desired a : the lower limit of integration b : upper limit of integration precision : precision of the result,error required default is 4 Returns: result : the value of the approximated integration of function in range a to b Raises: AssertionError: function is not callable AssertionError: a is not float or integer AssertionError: function should return float or integer AssertionError: b is not float or integer AssertionError: precision is not positive integer >>> simpson_integration(lambda x : x*x,1,2,3) 2.333 >>> simpson_integration(lambda x : x*x,'wrong_input',2,3) Traceback (most recent call last): ... AssertionError: a should be float or integer your input : wrong_input >>> simpson_integration(lambda x : x*x,1,'wrong_input',3) Traceback (most recent call last): ... AssertionError: b should be float or integer your input : wrong_input >>> simpson_integration(lambda x : x*x,1,2,'wrong_input') Traceback (most recent call last): ... AssertionError: precision should be positive integer your input : wrong_input >>> simpson_integration('wrong_input',2,3,4) Traceback (most recent call last): ... AssertionError: the function(object) passed should be callable your input : ... >>> simpson_integration(lambda x : x*x,3.45,3.2,1) -2.8 >>> simpson_integration(lambda x : x*x,3.45,3.2,0) Traceback (most recent call last): ... AssertionError: precision should be positive integer your input : 0 >>> simpson_integration(lambda x : x*x,3.45,3.2,-1) Traceback (most recent call last): ... AssertionError: precision should be positive integer your input : -1 .. py:data:: N_STEPS :value: 1000