machine_learning.xgboost_regressor¶
Functions¶
|
|
|
The URL for this algorithm |
|
Module Contents¶
- machine_learning.xgboost_regressor.data_handling(data: dict) tuple ¶
>>> data_handling(( ... {'data':'[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]' ... ,'target':([4.526])})) ('[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]', [4.526])
- machine_learning.xgboost_regressor.main() None ¶
The URL for this algorithm https://xgboost.readthedocs.io/en/stable/ California house price dataset is used to demonstrate the algorithm.
Expected error values: Mean Absolute Error: 0.30957163379906033 Mean Square Error: 0.22611560196662744
- machine_learning.xgboost_regressor.xgboost(features: numpy.ndarray, target: numpy.ndarray, test_features: numpy.ndarray) numpy.ndarray ¶
>>> xgboost(np.array([[ 2.3571 , 52. , 6.00813008, 1.06775068, ... 907. , 2.45799458, 40.58 , -124.26]]),np.array([1.114]), ... np.array([[1.97840000e+00, 3.70000000e+01, 4.98858447e+00, 1.03881279e+00, ... 1.14300000e+03, 2.60958904e+00, 3.67800000e+01, -1.19780000e+02]])) array([[1.1139996]], dtype=float32)