machine_learning.xgboost_regressor ================================== .. py:module:: machine_learning.xgboost_regressor Functions --------- .. autoapisummary:: machine_learning.xgboost_regressor.data_handling machine_learning.xgboost_regressor.main machine_learning.xgboost_regressor.xgboost Module Contents --------------- .. py:function:: data_handling(data: dict) -> tuple >>> data_handling(( ... {'data':'[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]' ... ,'target':([4.526])})) ('[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]', [4.526]) .. py:function:: main() -> None The URL for this algorithm https://xgboost.readthedocs.io/en/stable/ California house price dataset is used to demonstrate the algorithm. Expected error values: Mean Absolute Error: 0.30957163379906033 Mean Square Error: 0.22611560196662744 .. py:function:: xgboost(features: numpy.ndarray, target: numpy.ndarray, test_features: numpy.ndarray) -> numpy.ndarray >>> xgboost(np.array([[ 2.3571 , 52. , 6.00813008, 1.06775068, ... 907. , 2.45799458, 40.58 , -124.26]]),np.array([1.114]), ... np.array([[1.97840000e+00, 3.70000000e+01, 4.98858447e+00, 1.03881279e+00, ... 1.14300000e+03, 2.60958904e+00, 3.67800000e+01, -1.19780000e+02]])) array([[1.1139996]], dtype=float32)