machine_learning.scoring_functions¶
Functions¶
|
Examples(rounded for precision): |
|
|
|
This value is Negative, if the model underpredicts, |
|
Examples(rounded for precision): |
|
Examples(rounded for precision): |
|
Examples(rounded for precision): |
Module Contents¶
- machine_learning.scoring_functions.mae(predict, actual)¶
Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> float(np.around(mae(predict,actual),decimals = 2)) 0.67
>>> actual = [1,1,1];predict = [1,1,1] >>> float(mae(predict,actual)) 0.0
- machine_learning.scoring_functions.manual_accuracy(predict, actual)¶
- machine_learning.scoring_functions.mbd(predict, actual)¶
This value is Negative, if the model underpredicts, positive, if it overpredicts.
Example(rounded for precision):
Here the model overpredicts >>> actual = [1,2,3];predict = [2,3,4] >>> float(np.around(mbd(predict,actual),decimals = 2)) 50.0
Here the model underpredicts >>> actual = [1,2,3];predict = [0,1,1] >>> float(np.around(mbd(predict,actual),decimals = 2)) -66.67
- machine_learning.scoring_functions.mse(predict, actual)¶
Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> float(np.around(mse(predict,actual),decimals = 2)) 1.33
>>> actual = [1,1,1];predict = [1,1,1] >>> float(mse(predict,actual)) 0.0
- machine_learning.scoring_functions.rmse(predict, actual)¶
Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> float(np.around(rmse(predict,actual),decimals = 2)) 1.15
>>> actual = [1,1,1];predict = [1,1,1] >>> float(rmse(predict,actual)) 0.0
- machine_learning.scoring_functions.rmsle(predict, actual)¶
Examples(rounded for precision): >>> float(np.around(rmsle(predict=[10, 2, 30], actual=[10, 10, 30]), decimals=2)) 0.75
>>> float(rmsle(predict=[1, 1, 1], actual=[1, 1, 1])) 0.0