machine_learning.scoring_functions ================================== .. py:module:: machine_learning.scoring_functions Functions --------- .. autoapisummary:: machine_learning.scoring_functions.mae machine_learning.scoring_functions.manual_accuracy machine_learning.scoring_functions.mbd machine_learning.scoring_functions.mse machine_learning.scoring_functions.rmse machine_learning.scoring_functions.rmsle Module Contents --------------- .. py:function:: mae(predict, actual) Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> float(np.around(mae(predict,actual),decimals = 2)) 0.67 >>> actual = [1,1,1];predict = [1,1,1] >>> float(mae(predict,actual)) 0.0 .. py:function:: manual_accuracy(predict, actual) .. py:function:: mbd(predict, actual) This value is Negative, if the model underpredicts, positive, if it overpredicts. Example(rounded for precision): Here the model overpredicts >>> actual = [1,2,3];predict = [2,3,4] >>> float(np.around(mbd(predict,actual),decimals = 2)) 50.0 Here the model underpredicts >>> actual = [1,2,3];predict = [0,1,1] >>> float(np.around(mbd(predict,actual),decimals = 2)) -66.67 .. py:function:: mse(predict, actual) Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> float(np.around(mse(predict,actual),decimals = 2)) 1.33 >>> actual = [1,1,1];predict = [1,1,1] >>> float(mse(predict,actual)) 0.0 .. py:function:: rmse(predict, actual) Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> float(np.around(rmse(predict,actual),decimals = 2)) 1.15 >>> actual = [1,1,1];predict = [1,1,1] >>> float(rmse(predict,actual)) 0.0 .. py:function:: rmsle(predict, actual) Examples(rounded for precision): >>> float(np.around(rmsle(predict=[10, 2, 30], actual=[10, 10, 30]), decimals=2)) 0.75 >>> float(rmsle(predict=[1, 1, 1], actual=[1, 1, 1])) 0.0