machine_learning.polynomial_regression¶
Polynomial regression is a type of regression analysis that models the relationship between a predictor x and the response y as an mth-degree polynomial:
y = β₀ + β₁x + β₂x² + … + βₘxᵐ + ε
By treating x, x², …, xᵐ as distinct variables, we see that polynomial regression is a special case of multiple linear regression. Therefore, we can use ordinary least squares (OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, …, βₘ) for polynomial regression:
β = (XᵀX)⁻¹Xᵀy = X⁺y
where X is the design matrix, y is the response vector, and X⁺ denotes the Moore-Penrose pseudoinverse of X. In the case of polynomial regression, the design matrix is
In OLS estimation, inverting XᵀX to compute X⁺ can be very numerically unstable. This implementation sidesteps this need to invert XᵀX by computing X⁺ using singular value decomposition (SVD):
β = VΣ⁺Uᵀy
where UΣVᵀ is an SVD of X.
- References:
Classes¶
Functions¶
|
Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg |
Module Contents¶
- class machine_learning.polynomial_regression.PolynomialRegression(degree: int)¶
- static _design_matrix(data: numpy.ndarray, degree: int) numpy.ndarray ¶
Constructs a polynomial regression design matrix for the given input data. For input data x = (x₁, x₂, …, xₙ) and polynomial degree m, the design matrix is the Vandermonde matrix
Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
- @param data: the input predictor values x, either for model fitting or for
prediction
@param degree: the polynomial degree m @returns: the Vandermonde matrix X (see above) @raises ValueError: if input data is not N x 1
>>> x = np.array([0, 1, 2]) >>> PolynomialRegression._design_matrix(x, degree=0) array([[1], [1], [1]]) >>> PolynomialRegression._design_matrix(x, degree=1) array([[1, 0], [1, 1], [1, 2]]) >>> PolynomialRegression._design_matrix(x, degree=2) array([[1, 0, 0], [1, 1, 1], [1, 2, 4]]) >>> PolynomialRegression._design_matrix(x, degree=3) array([[1, 0, 0, 0], [1, 1, 1, 1], [1, 2, 4, 8]]) >>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3) Traceback (most recent call last): ... ValueError: Data must have dimensions N x 1
- fit(x_train: numpy.ndarray, y_train: numpy.ndarray) None ¶
Computes the polynomial regression model parameters using ordinary least squares (OLS) estimation:
β = (XᵀX)⁻¹Xᵀy = X⁺y
where X⁺ denotes the Moore-Penrose pseudoinverse of the design matrix X. This function computes X⁺ using singular value decomposition (SVD).
- References:
@param x_train: the predictor values x for model fitting @param y_train: the response values y for model fitting @raises ArithmeticError: if X isn’t full rank, then XᵀX is singular and β
doesn’t exist
>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) >>> y = x**3 - 2 * x**2 + 3 * x - 5 >>> poly_reg = PolynomialRegression(degree=3) >>> poly_reg.fit(x, y) >>> poly_reg.params array([-5., 3., -2., 1.]) >>> poly_reg = PolynomialRegression(degree=20) >>> poly_reg.fit(x, y) Traceback (most recent call last): ... ArithmeticError: Design matrix is not full rank, can't compute coefficients
Make sure errors don’t grow too large: >>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1]) >>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs >>> poly_reg = PolynomialRegression(degree=len(coefs) - 1) >>> poly_reg.fit(x, y) >>> np.allclose(poly_reg.params, coefs, atol=10e-3) True
- predict(data: numpy.ndarray) numpy.ndarray ¶
Computes the predicted response values y for the given input data by constructing the design matrix X and evaluating y = Xβ.
@param data: the predictor values x for prediction @returns: the predicted response values y = Xβ @raises ArithmeticError: if this function is called before the model
parameters are fit
>>> x = np.array([0, 1, 2, 3, 4]) >>> y = x**3 - 2 * x**2 + 3 * x - 5 >>> poly_reg = PolynomialRegression(degree=3) >>> poly_reg.fit(x, y) >>> poly_reg.predict(np.array([-1])) array([-11.]) >>> poly_reg.predict(np.array([-2])) array([-27.]) >>> poly_reg.predict(np.array([6])) array([157.]) >>> PolynomialRegression(degree=3).predict(x) Traceback (most recent call last): ... ArithmeticError: Predictor hasn't been fit yet
- __slots__ = ('degree', 'params')¶
- degree¶
- params = None¶
- machine_learning.polynomial_regression.main() None ¶
Fit a polynomial regression model to predict fuel efficiency using seaborn’s mpg dataset
>>> pass # Placeholder, function is only for demo purposes