machine_learning.polynomial_regression ====================================== .. py:module:: machine_learning.polynomial_regression .. autoapi-nested-parse:: Polynomial regression is a type of regression analysis that models the relationship between a predictor x and the response y as an mth-degree polynomial: y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε By treating x, x², ..., xᵐ as distinct variables, we see that polynomial regression is a special case of multiple linear regression. Therefore, we can use ordinary least squares (OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ) for polynomial regression: β = (XᵀX)⁻¹Xᵀy = X⁺y where X is the design matrix, y is the response vector, and X⁺ denotes the Moore-Penrose pseudoinverse of X. In the case of polynomial regression, the design matrix is |1 x₁ x₁² ⋯ x₁ᵐ| X = |1 x₂ x₂² ⋯ x₂ᵐ| |⋮ ⋮ ⋮ ⋱ ⋮ | |1 xₙ xₙ² ⋯ xₙᵐ| In OLS estimation, inverting XᵀX to compute X⁺ can be very numerically unstable. This implementation sidesteps this need to invert XᵀX by computing X⁺ using singular value decomposition (SVD): β = VΣ⁺Uᵀy where UΣVᵀ is an SVD of X. References: - https://en.wikipedia.org/wiki/Polynomial_regression - https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse - https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares - https://en.wikipedia.org/wiki/Singular_value_decomposition Classes ------- .. autoapisummary:: machine_learning.polynomial_regression.PolynomialRegression Functions --------- .. autoapisummary:: machine_learning.polynomial_regression.main Module Contents --------------- .. py:class:: PolynomialRegression(degree: int) .. py:method:: _design_matrix(data: numpy.ndarray, degree: int) -> numpy.ndarray :staticmethod: Constructs a polynomial regression design matrix for the given input data. For input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is the Vandermonde matrix |1 x₁ x₁² ⋯ x₁ᵐ| X = |1 x₂ x₂² ⋯ x₂ᵐ| |⋮ ⋮ ⋮ ⋱ ⋮ | |1 xₙ xₙ² ⋯ xₙᵐ| Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix @param data: the input predictor values x, either for model fitting or for prediction @param degree: the polynomial degree m @returns: the Vandermonde matrix X (see above) @raises ValueError: if input data is not N x 1 >>> x = np.array([0, 1, 2]) >>> PolynomialRegression._design_matrix(x, degree=0) array([[1], [1], [1]]) >>> PolynomialRegression._design_matrix(x, degree=1) array([[1, 0], [1, 1], [1, 2]]) >>> PolynomialRegression._design_matrix(x, degree=2) array([[1, 0, 0], [1, 1, 1], [1, 2, 4]]) >>> PolynomialRegression._design_matrix(x, degree=3) array([[1, 0, 0, 0], [1, 1, 1, 1], [1, 2, 4, 8]]) >>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3) Traceback (most recent call last): ... ValueError: Data must have dimensions N x 1 .. py:method:: fit(x_train: numpy.ndarray, y_train: numpy.ndarray) -> None Computes the polynomial regression model parameters using ordinary least squares (OLS) estimation: β = (XᵀX)⁻¹Xᵀy = X⁺y where X⁺ denotes the Moore-Penrose pseudoinverse of the design matrix X. This function computes X⁺ using singular value decomposition (SVD). References: - https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse - https://en.wikipedia.org/wiki/Singular_value_decomposition - https://en.wikipedia.org/wiki/Multicollinearity @param x_train: the predictor values x for model fitting @param y_train: the response values y for model fitting @raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β doesn't exist >>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) >>> y = x**3 - 2 * x**2 + 3 * x - 5 >>> poly_reg = PolynomialRegression(degree=3) >>> poly_reg.fit(x, y) >>> poly_reg.params array([-5., 3., -2., 1.]) >>> poly_reg = PolynomialRegression(degree=20) >>> poly_reg.fit(x, y) Traceback (most recent call last): ... ArithmeticError: Design matrix is not full rank, can't compute coefficients Make sure errors don't grow too large: >>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1]) >>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs >>> poly_reg = PolynomialRegression(degree=len(coefs) - 1) >>> poly_reg.fit(x, y) >>> np.allclose(poly_reg.params, coefs, atol=10e-3) True .. py:method:: predict(data: numpy.ndarray) -> numpy.ndarray Computes the predicted response values y for the given input data by constructing the design matrix X and evaluating y = Xβ. @param data: the predictor values x for prediction @returns: the predicted response values y = Xβ @raises ArithmeticError: if this function is called before the model parameters are fit >>> x = np.array([0, 1, 2, 3, 4]) >>> y = x**3 - 2 * x**2 + 3 * x - 5 >>> poly_reg = PolynomialRegression(degree=3) >>> poly_reg.fit(x, y) >>> poly_reg.predict(np.array([-1])) array([-11.]) >>> poly_reg.predict(np.array([-2])) array([-27.]) >>> poly_reg.predict(np.array([6])) array([157.]) >>> PolynomialRegression(degree=3).predict(x) Traceback (most recent call last): ... ArithmeticError: Predictor hasn't been fit yet .. py:attribute:: __slots__ :value: ('degree', 'params') .. py:attribute:: degree .. py:attribute:: params :value: None .. py:function:: main() -> None Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg dataset >>> pass # Placeholder, function is only for demo purposes