machine_learning.gradient_boosting_classifier¶
Attributes¶
Classes¶
Module Contents¶
- class machine_learning.gradient_boosting_classifier.GradientBoostingClassifier(n_estimators: int = 100, learning_rate: float = 0.1)¶
- fit(features: numpy.ndarray, target: numpy.ndarray) None ¶
Fit the GradientBoostingClassifier to the training data.
Parameters: - features (np.ndarray): The training features. - target (np.ndarray): The target values.
Returns: None
>>> import numpy as np >>> from sklearn.datasets import load_iris >>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1) >>> iris = load_iris() >>> X, y = iris.data, iris.target >>> clf.fit(X, y) >>> # Check if the model is trained >>> len(clf.models) == 100 True
- gradient(target: numpy.ndarray, y_pred: numpy.ndarray) numpy.ndarray ¶
Calculate the negative gradient (pseudo-residuals) for logistic loss.
Parameters: - target (np.ndarray): The target values. - y_pred (np.ndarray): The predicted values.
Returns: - np.ndarray: An array of pseudo-residuals.
>>> import numpy as np >>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1) >>> target = np.array([0, 1, 0, 1]) >>> y_pred = np.array([0.2, 0.8, 0.3, 0.7]) >>> residuals = clf.gradient(target, y_pred) >>> # Check if residuals have the correct shape >>> residuals.shape == target.shape True
- predict(features: numpy.ndarray) numpy.ndarray ¶
Make predictions on input data.
Parameters: - features (np.ndarray): The input data for making predictions.
Returns: - np.ndarray: An array of binary predictions (-1 or 1).
>>> import numpy as np >>> from sklearn.datasets import load_iris >>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1) >>> iris = load_iris() >>> X, y = iris.data, iris.target >>> clf.fit(X, y) >>> y_pred = clf.predict(X) >>> # Check if the predictions have the correct shape >>> y_pred.shape == y.shape True
- learning_rate¶
- models: list[tuple[sklearn.tree.DecisionTreeRegressor, float]] = []¶
- n_estimators¶
- machine_learning.gradient_boosting_classifier.iris¶