machine_learning.frequent_pattern_growth¶
The Frequent Pattern Growth algorithm (FP-Growth) is a widely used data mining technique for discovering frequent itemsets in large transaction databases.
It overcomes some of the limitations of traditional methods such as Apriori by efficiently constructing the FP-Tree
WIKI: https://athena.ecs.csus.edu/~mei/associationcw/FpGrowth.html
Examples: https://www.javatpoint.com/fp-growth-algorithm-in-data-mining
Attributes¶
Classes¶
A node in a Frequent Pattern tree. |
Functions¶
|
Ascend the FP-Tree from a leaf node to its root, adding item names to the prefix |
|
Create Frequent Pattern tree |
|
Find the conditional pattern base for a given base pattern. |
|
Mine the FP-Tree recursively to discover frequent itemsets. |
|
Update the header table with a node link. |
|
Update the FP-Tree with a transaction. |
Module Contents¶
- class machine_learning.frequent_pattern_growth.TreeNode¶
A node in a Frequent Pattern tree.
- Args:
name: The name of this node. num_occur: The number of occurrences of the node. parent_node: The parent node.
Example: >>> parent = TreeNode(“Parent”, 1, None) >>> child = TreeNode(“Child”, 2, parent) >>> child.name ‘Child’ >>> child.count 2
- __repr__() str ¶
- disp(ind: int = 1) None ¶
- inc(num_occur: int) None ¶
- count: int¶
- name: str¶
- machine_learning.frequent_pattern_growth.ascend_tree(leaf_node: TreeNode, prefix_path: list[str]) None ¶
Ascend the FP-Tree from a leaf node to its root, adding item names to the prefix path.
- Args:
leaf_node: The leaf node to start ascending from. prefix_path: A list to store the item as they are ascended.
Example: >>> data_set = [ … [‘A’, ‘B’, ‘C’], … [‘A’, ‘C’], … [‘A’, ‘B’, ‘E’], … [‘A’, ‘B’, ‘C’, ‘E’], … [‘B’, ‘E’] … ] >>> min_sup = 2 >>> fp_tree, header_table = create_tree(data_set, min_sup)
>>> path = [] >>> ascend_tree(fp_tree.children['A'], path) >>> path # ascending from a leaf node 'A' ['A']
- machine_learning.frequent_pattern_growth.create_tree(data_set: list, min_sup: int = 1) tuple[TreeNode, dict] ¶
Create Frequent Pattern tree
- Args:
data_set: A list of transactions, where each transaction is a list of items. min_sup: The minimum support threshold. Items with support less than this will be pruned. Default is 1.
- Returns:
The root of the FP-Tree. header_table: The header table dictionary with item information.
Example: >>> data_set = [ … [‘A’, ‘B’, ‘C’], … [‘A’, ‘C’], … [‘A’, ‘B’, ‘E’], … [‘A’, ‘B’, ‘C’, ‘E’], … [‘B’, ‘E’] … ] >>> min_sup = 2 >>> fp_tree, header_table = create_tree(data_set, min_sup) >>> fp_tree TreeNode(‘Null Set’, 1, None) >>> len(header_table) 4 >>> header_table[“A”] [[4, None], TreeNode(‘A’, 4, TreeNode(‘Null Set’, 1, None))] >>> header_table[“E”][1] # doctest: +NORMALIZE_WHITESPACE TreeNode(‘E’, 1, TreeNode(‘B’, 3, TreeNode(‘A’, 4, TreeNode(‘Null Set’, 1, None)))) >>> sorted(header_table) [‘A’, ‘B’, ‘C’, ‘E’] >>> fp_tree.name ‘Null Set’ >>> sorted(fp_tree.children) [‘A’, ‘B’] >>> fp_tree.children[‘A’].name ‘A’ >>> sorted(fp_tree.children[‘A’].children) [‘B’, ‘C’]
- machine_learning.frequent_pattern_growth.find_prefix_path(base_pat: frozenset, tree_node: TreeNode | None) dict ¶
Find the conditional pattern base for a given base pattern.
- Args:
base_pat: The base pattern for which to find the conditional pattern base. tree_node: The node in the FP-Tree.
Example: >>> data_set = [ … [‘A’, ‘B’, ‘C’], … [‘A’, ‘C’], … [‘A’, ‘B’, ‘E’], … [‘A’, ‘B’, ‘C’, ‘E’], … [‘B’, ‘E’] … ] >>> min_sup = 2 >>> fp_tree, header_table = create_tree(data_set, min_sup) >>> fp_tree TreeNode(‘Null Set’, 1, None) >>> len(header_table) 4 >>> base_pattern = frozenset([‘A’]) >>> sorted(find_prefix_path(base_pattern, fp_tree.children[‘A’])) []
- machine_learning.frequent_pattern_growth.mine_tree(in_tree: TreeNode, header_table: dict, min_sup: int, pre_fix: set, freq_item_list: list) None ¶
Mine the FP-Tree recursively to discover frequent itemsets.
- Args:
in_tree: The FP-Tree to mine. header_table: The header table dictionary with item information. min_sup: The minimum support threshold. pre_fix: A set of items as a prefix for the itemsets being mined. freq_item_list: A list to store the frequent itemsets.
Example: >>> data_set = [ … [‘A’, ‘B’, ‘C’], … [‘A’, ‘C’], … [‘A’, ‘B’, ‘E’], … [‘A’, ‘B’, ‘C’, ‘E’], … [‘B’, ‘E’] … ] >>> min_sup = 2 >>> fp_tree, header_table = create_tree(data_set, min_sup) >>> fp_tree TreeNode(‘Null Set’, 1, None) >>> frequent_itemsets = [] >>> mine_tree(fp_tree, header_table, min_sup, set([]), frequent_itemsets) >>> expe_itm = [{‘C’}, {‘C’, ‘A’}, {‘E’}, {‘A’, ‘E’}, {‘E’, ‘B’}, {‘A’}, {‘B’}] >>> all(expected in frequent_itemsets for expected in expe_itm) True
- machine_learning.frequent_pattern_growth.update_header(node_to_test: TreeNode, target_node: TreeNode) TreeNode ¶
Update the header table with a node link.
- Args:
node_to_test: The node to be updated in the header table. target_node: The node to link to.
Example: >>> data_set = [ … [‘A’, ‘B’, ‘C’], … [‘A’, ‘C’], … [‘A’, ‘B’, ‘E’], … [‘A’, ‘B’, ‘C’, ‘E’], … [‘B’, ‘E’] … ] >>> min_sup = 2 >>> fp_tree, header_table = create_tree(data_set, min_sup) >>> fp_tree TreeNode(‘Null Set’, 1, None) >>> node1 = TreeNode(“A”, 3, None) >>> node2 = TreeNode(“B”, 4, None) >>> node1 TreeNode(‘A’, 3, None) >>> node1 = update_header(node1, node2) >>> node1 TreeNode(‘A’, 3, None) >>> node1.node_link TreeNode(‘B’, 4, None) >>> node2.node_link is None True
- machine_learning.frequent_pattern_growth.update_tree(items: list, in_tree: TreeNode, header_table: dict, count: int) None ¶
Update the FP-Tree with a transaction.
- Args:
items: List of items in the transaction. in_tree: The current node in the FP-Tree. header_table: The header table dictionary with item information. count: The count of the transaction.
Example: >>> data_set = [ … [‘A’, ‘B’, ‘C’], … [‘A’, ‘C’], … [‘A’, ‘B’, ‘E’], … [‘A’, ‘B’, ‘C’, ‘E’], … [‘B’, ‘E’] … ] >>> min_sup = 2 >>> fp_tree, header_table = create_tree(data_set, min_sup) >>> fp_tree TreeNode(‘Null Set’, 1, None) >>> transaction = [‘A’, ‘B’, ‘E’] >>> update_tree(transaction, fp_tree, header_table, 1) >>> fp_tree TreeNode(‘Null Set’, 1, None) >>> fp_tree.children[‘A’].children[‘B’].children[‘E’].children {} >>> fp_tree.children[‘A’].children[‘B’].children[‘E’].count 2 >>> header_table[‘E’][1].name ‘E’
- machine_learning.frequent_pattern_growth.data_set: list[frozenset]¶