data_structures.binary_tree.number_of_possible_binary_trees¶
Hey, we are going to find an exciting number called Catalan number which is use to find the number of possible binary search trees from tree of a given number of nodes.
We will use the formula: t(n) = SUMMATION(i = 1 to n)t(i-1)t(n-i)
Further details at Wikipedia: https://en.wikipedia.org/wiki/Catalan_number
Attributes¶
Functions¶
|
Return the number of possible of binary trees. |
|
Since Here we Find the Binomial Coefficient: |
|
We can find Catalan number many ways but here we use Binomial Coefficient because it |
|
Return the factorial of a number. |
Module Contents¶
- data_structures.binary_tree.number_of_possible_binary_trees.binary_tree_count(node_count: int) int ¶
Return the number of possible of binary trees. :param n: number of nodes :return: Number of possible binary trees
>>> binary_tree_count(5) 5040 >>> binary_tree_count(6) 95040
- data_structures.binary_tree.number_of_possible_binary_trees.binomial_coefficient(n: int, k: int) int ¶
Since Here we Find the Binomial Coefficient: https://en.wikipedia.org/wiki/Binomial_coefficient C(n,k) = n! / k!(n-k)! :param n: 2 times of Number of nodes :param k: Number of nodes :return: Integer Value
>>> binomial_coefficient(4, 2) 6
- data_structures.binary_tree.number_of_possible_binary_trees.catalan_number(node_count: int) int ¶
We can find Catalan number many ways but here we use Binomial Coefficient because it does the job in O(n)
return the Catalan number of n using 2nCn/(n+1). :param n: number of nodes :return: Catalan number of n nodes
>>> catalan_number(5) 42 >>> catalan_number(6) 132
- data_structures.binary_tree.number_of_possible_binary_trees.factorial(n: int) int ¶
Return the factorial of a number. :param n: Number to find the Factorial of. :return: Factorial of n.
>>> import math >>> all(factorial(i) == math.factorial(i) for i in range(10)) True >>> factorial(-5) Traceback (most recent call last): ... ValueError: factorial() not defined for negative values
- data_structures.binary_tree.number_of_possible_binary_trees.node_count¶