data_structures.binary_tree.number_of_possible_binary_trees =========================================================== .. py:module:: data_structures.binary_tree.number_of_possible_binary_trees .. autoapi-nested-parse:: Hey, we are going to find an exciting number called Catalan number which is use to find the number of possible binary search trees from tree of a given number of nodes. We will use the formula: t(n) = SUMMATION(i = 1 to n)t(i-1)t(n-i) Further details at Wikipedia: https://en.wikipedia.org/wiki/Catalan_number Attributes ---------- .. autoapisummary:: data_structures.binary_tree.number_of_possible_binary_trees.node_count Functions --------- .. autoapisummary:: data_structures.binary_tree.number_of_possible_binary_trees.binary_tree_count data_structures.binary_tree.number_of_possible_binary_trees.binomial_coefficient data_structures.binary_tree.number_of_possible_binary_trees.catalan_number data_structures.binary_tree.number_of_possible_binary_trees.factorial Module Contents --------------- .. py:function:: binary_tree_count(node_count: int) -> int Return the number of possible of binary trees. :param n: number of nodes :return: Number of possible binary trees >>> binary_tree_count(5) 5040 >>> binary_tree_count(6) 95040 .. py:function:: binomial_coefficient(n: int, k: int) -> int Since Here we Find the Binomial Coefficient: https://en.wikipedia.org/wiki/Binomial_coefficient C(n,k) = n! / k!(n-k)! :param n: 2 times of Number of nodes :param k: Number of nodes :return: Integer Value >>> binomial_coefficient(4, 2) 6 .. py:function:: catalan_number(node_count: int) -> int We can find Catalan number many ways but here we use Binomial Coefficient because it does the job in O(n) return the Catalan number of n using 2nCn/(n+1). :param n: number of nodes :return: Catalan number of n nodes >>> catalan_number(5) 42 >>> catalan_number(6) 132 .. py:function:: factorial(n: int) -> int Return the factorial of a number. :param n: Number to find the Factorial of. :return: Factorial of n. >>> import math >>> all(factorial(i) == math.factorial(i) for i in range(10)) True >>> factorial(-5) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: factorial() not defined for negative values .. py:data:: node_count