Exponential search algorithm
More...
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstring>
Go to the source code of this file.
|
template<class Type > |
Type * | binary_s (Type *array, size_t size, Type key) |
|
template<class Type > |
Type * | struzik_search (Type *array, size_t size, Type key) |
|
int | main () |
|
Exponential search algorithm
- Copyright
- 2020 Divide-et-impera-11
The algorithm try to search the range where the key should be. If it has been found we do a binary search there. The range of the search grows by exponential every time. If the key is larger than the last element of array, the start of block(block_front) will be equal to the end of block(block_size) and the algorithm return null ponter, every other cases the algoritm return fom the loop.
Definition in file exponential_search.cpp.
◆ binary_s()
template<class Type >
Type * binary_s |
( |
Type * | array, |
|
|
size_t | size, |
|
|
Type | key ) |
|
inline |
Binary Search Algorithm (used by struzik_search)
- Time Complexity O(log n) where 'n' is the number of elements
- Worst Time Complexity O(log n)
- Best Time Complexity Ω(1)
- Space Complexity O(1)
- Auxiliary Space Complexity O(1)
- Returns
- pointer to value in the array
-
nullptr
if value not found
Definition at line 34 of file exponential_search.cpp.
34 {
35 int32_t lower_index(0), upper_index(size - 1), middle_index;
36
37 while (lower_index <= upper_index) {
38 middle_index = std::floor((lower_index + upper_index) / 2);
39
40 if (*(array + middle_index) < key)
41 lower_index = (middle_index + 1);
42 else if (*(array + middle_index) > key)
43 upper_index = (middle_index - 1);
44 else
45 return (array + middle_index);
46 }
47
48 return nullptr;
49}
◆ main()
Main function
Definition at line 74 of file exponential_search.cpp.
74 {
75
76 int* sorted_array = new int[7]{7, 10, 15, 23, 70, 105, 203};
81
82 delete[] sorted_array;
83 return 0;
84}
Type * struzik_search(Type *array, size_t size, Type key)
◆ struzik_search()
template<class Type >
Type * struzik_search |
( |
Type * | array, |
|
|
size_t | size, |
|
|
Type | key ) |
Struzik Search Algorithm(Exponential)
- Time Complexity O(log i) where i is the position of search key in the list
- Worst Time Complexity O(log i)
- Best Time Complexity Ω(1)
- Space Complexity O(1)
- Auxiliary Space Complexity O(1)
Definition at line 59 of file exponential_search.cpp.
59 {
60 uint32_t block_front(0), block_size = size == 0 ? 0 : 1;
61 while (block_front != block_size) {
62 if (*(array + block_size - 1) < key) {
63 block_front = block_size;
64 (block_size * 2 - 1 < size) ? (block_size *= 2) : block_size = size;
65 continue;
66 }
67 return binary_s<Type>(array + block_front, (block_size - block_front),
68 key);
69 }
70 return nullptr;
71}
Type * binary_s(Type *array, size_t size, Type key)