Exponential search algorithm  
More...
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstring>
Go to the source code of this file.
|  | 
| template<class Type> | 
| Type * | binary_s (Type *array, size_t size, Type key) | 
| template<class Type> | 
| Type * | struzik_search (Type *array, size_t size, Type key) | 
| int | main () | 
Exponential search algorithm 
- Copyright
- 2020 Divide-et-impera-11
The algorithm try to search the range where the key should be. If it has been found we do a binary search there. The range of the search grows by exponential every time. If the key is larger than the last element of array, the start of block(block_front) will be equal to the end of block(block_size) and the algorithm return null ponter, every other cases the algoritm return fom the loop. 
Definition in file exponential_search.cpp.
◆ binary_s()
template<class Type> 
  
  | 
        
          | Type * binary_s | ( | Type * | array, |  
          |  |  | size_t | size, |  
          |  |  | Type | key ) |  | inline | 
 
Binary Search Algorithm (used by struzik_search)
- Time Complexity O(log n) where 'n' is the number of elements
- Worst Time Complexity O(log n)
- Best Time Complexity Ω(1)
- Space Complexity O(1)
- Auxiliary Space Complexity O(1) - Returns
- pointer to value in the array 
- 
nullptr if value not found 
 
Definition at line 34 of file exponential_search.cpp.
   34                                                          {
   35    int32_t lower_index(0), upper_index(size - 1), middle_index;
   36 
   37    while (lower_index <= upper_index) {
   38        middle_index = std::floor((lower_index + upper_index) / 2);
   39 
   40        if (*(array + middle_index) < key)
   41            lower_index = (middle_index + 1);
   42        else if (*(array + middle_index) > key)
   43            upper_index = (middle_index - 1);
   44        else
   45            return (array + middle_index);
   46    }
   47 
   48    return nullptr;
   49}
 
 
◆ main()
Main function 
Definition at line 74 of file exponential_search.cpp.
   74           {
   75    
   76    int* sorted_array = new int[7]{7, 10, 15, 23, 70, 105, 203};
   81    
   82    delete[] sorted_array;
   83    return 0;
   84}
Type * struzik_search(Type *array, size_t size, Type key)
 
 
◆ struzik_search()
template<class Type> 
      
        
          | Type * struzik_search | ( | Type * | array, | 
        
          |  |  | size_t | size, | 
        
          |  |  | Type | key ) | 
      
 
Struzik Search Algorithm(Exponential)
- Time Complexity O(log i) where i is the position of search key in the list
- Worst Time Complexity O(log i)
- Best Time Complexity Ω(1)
- Space Complexity O(1)
- Auxiliary Space Complexity O(1) 
Definition at line 59 of file exponential_search.cpp.
   59                                                         {
   60    uint32_t block_front(0), block_size = size == 0 ? 0 : 1;
   61    while (block_front != block_size) {
   62        if (*(array + block_size - 1) < key) {
   63            block_front = block_size;
   64            (block_size * 2 - 1 < size) ? (block_size *= 2) : block_size = size;
   65            continue;
   66        }
   67        return binary_s<Type>(array + block_front, (block_size - block_front),
 
   68                              key);
   69    }
   70    return nullptr;
   71}
Type * binary_s(Type *array, size_t size, Type key)