Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
Loading...
Searching...
No Matches
graph_coloring.cpp File Reference

prints the assigned colors using Graph Coloring algorithm More...

#include <array>
#include <iostream>
#include <vector>
Include dependency graph for graph_coloring.cpp:

Namespaces

namespace  backtracking
 for vector container
 
namespace  graph_coloring
 Functions for the Graph Coloring algorithm,.
 

Functions

template<size_t V>
void backtracking::graph_coloring::printSolution (const std::array< int, V > &color)
 A utility function to print the solution.
 
template<size_t V>
bool backtracking::graph_coloring::isSafe (int v, const std::array< std::array< int, V >, V > &graph, const std::array< int, V > &color, int c)
 Utility function to check if the current color assignment is safe for vertex v.
 
template<size_t V>
void backtracking::graph_coloring::graphColoring (const std::array< std::array< int, V >, V > &graph, int m, std::array< int, V > color, int v)
 Recursive utility function to solve m coloring problem.
 
int main ()
 Main function.
 

Detailed Description

prints the assigned colors using Graph Coloring algorithm

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

Author
Anup Kumar Panwar
David Leal

Function Documentation

◆ graphColoring()

template<size_t V>
void backtracking::graph_coloring::graphColoring ( const std::array< std::array< int, V >, V > & graph,
int m,
std::array< int, V > color,
int v )

Recursive utility function to solve m coloring problem.

Template Parameters
Vnumber of vertices in the graph
Parameters
graphmatrix of graph nonnectivity
mnumber of colors
[in,out]colordescription // used in,out to notify in documentation that this parameter gets modified by the function
vindex of graph vertex to check
83 {
84 // base case:
85 // If all vertices are assigned a color then return true
86 if (v == V) {
87 printSolution<V>(color);
88 return;
89 }
90
91 // Consider this vertex v and try different colors
92 for (int c = 1; c <= m; c++) {
93 // Check if assignment of color c to v is fine
94 if (isSafe<V>(v, graph, color, c)) {
95 color[v] = c;
96
97 // recur to assign colors to rest of the vertices
98 graphColoring<V>(graph, m, color, v + 1);
99
100 // If assigning color c doesn't lead to a solution then remove it
101 color[v] = 0;
102 }
103 }
104}
Graph Algorithms.
Here is the call graph for this function:

◆ isSafe()

template<size_t V>
bool backtracking::graph_coloring::isSafe ( int v,
const std::array< std::array< int, V >, V > & graph,
const std::array< int, V > & color,
int c )

Utility function to check if the current color assignment is safe for vertex v.

Template Parameters
Vnumber of vertices in the graph
Parameters
vindex of graph vertex to check
graphmatrix of graph nonnectivity
colorvector of colors assigned to the graph nodes/vertices
ccolor value to check for the node v
Returns
true if the color is safe to be assigned to the node
false if the color is not safe to be assigned to the node
63 {
64 for (int i = 0; i < V; i++) {
65 if (graph[v][i] && c == color[i]) {
66 return false;
67 }
68 }
69 return true;
70}
Here is the call graph for this function:

◆ main()

int main ( void )

Main function.

Returns
0 on exit
112 {
113 // Create following graph and test whether it is 3 colorable
114 // (3)---(2)
115 // | / |
116 // | / |
117 // | / |
118 // (0)---(1)
119
120 const int V = 4; // number of vertices in the graph
122 std::array<int, V>({0, 1, 1, 1}), std::array<int, V>({1, 0, 1, 0}),
123 std::array<int, V>({1, 1, 0, 1}), std::array<int, V>({1, 0, 1, 0})};
124
125 int m = 3; // Number of colors
126 std::array<int, V> color{};
127
128 backtracking::graph_coloring::graphColoring<V>(graph, m, color, 0);
129 return 0;
130}

◆ printSolution()

template<size_t V>
void backtracking::graph_coloring::printSolution ( const std::array< int, V > & color)

A utility function to print the solution.

Template Parameters
Vnumber of vertices in the graph
Parameters
colorarray of colors assigned to the nodes
42 {
43 std::cout << "Following are the assigned colors\n";
44 for (auto& col : color) {
45 std::cout << col;
46 }
47 std::cout << "\n";
48}
Here is the call graph for this function: