sorts.merge_insertion_sort¶
This is a pure Python implementation of the merge-insertion sort algorithm Source: https://en.wikipedia.org/wiki/Merge-insertion_sort
For doctests run following command: python3 -m doctest -v merge_insertion_sort.py or python -m doctest -v merge_insertion_sort.py
For manual testing run: python3 merge_insertion_sort.py
Attributes¶
Functions¶
|
|
|
|
|
Pure implementation of merge-insertion sort algorithm in Python |
|
Module Contents¶
- sorts.merge_insertion_sort.binary_search_insertion(sorted_list, item)¶
>>> binary_search_insertion([1, 2, 7, 9, 10], 4) [1, 2, 4, 7, 9, 10]
- sorts.merge_insertion_sort.merge(left, right)¶
>>> merge([[1, 6], [9, 10]], [[2, 3], [4, 5], [7, 8]]) [[1, 6], [2, 3], [4, 5], [7, 8], [9, 10]]
- sorts.merge_insertion_sort.merge_insertion_sort(collection: list[int]) list[int] ¶
Pure implementation of merge-insertion sort algorithm in Python
- Parameters:
collection – some mutable ordered collection with heterogeneous
comparable items inside :return: the same collection ordered by ascending
Examples: >>> merge_insertion_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5]
>>> merge_insertion_sort([99]) [99]
>>> merge_insertion_sort([-2, -5, -45]) [-45, -5, -2]
Testing with all permutations on range(0,5): >>> import itertools >>> permutations = list(itertools.permutations([0, 1, 2, 3, 4])) >>> all(merge_insertion_sort(p) == [0, 1, 2, 3, 4] for p in permutations) True
- sorts.merge_insertion_sort.sortlist_2d(list_2d)¶
>>> sortlist_2d([[9, 10], [1, 6], [7, 8], [2, 3], [4, 5]]) [[1, 6], [2, 3], [4, 5], [7, 8], [9, 10]]
- sorts.merge_insertion_sort.user_input¶