sorts.intro_sort¶
Introspective Sort is a hybrid sort (Quick Sort + Heap Sort + Insertion Sort) if the size of the list is under 16, use insertion sort https://en.wikipedia.org/wiki/Introsort
Attributes¶
Functions¶
|
|
|
|
|
|
|
|
|
|
|
|
|
Module Contents¶
- sorts.intro_sort.heap_sort(array: list) list ¶
>>> heap_sort([4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]) [1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79] >>> heap_sort([-2, -11, 0, 0, 0, 87, 45, -69, 78, 12, 10, 103, 89, 52]) [-69, -11, -2, 0, 0, 0, 10, 12, 45, 52, 78, 87, 89, 103] >>> heap_sort(['b', 'd', 'e', 'f', 'g', 'p', 'x', 'z', 'b', 's', 'e', 'u', 'v']) ['b', 'b', 'd', 'e', 'e', 'f', 'g', 'p', 's', 'u', 'v', 'x', 'z'] >>> heap_sort([6.2, -45.54, 8465.20, 758.56, -457.0, 0, 1, 2.879, 1.7, 11.7]) [-457.0, -45.54, 0, 1, 1.7, 2.879, 6.2, 11.7, 758.56, 8465.2]
- sorts.intro_sort.heapify(array: list, index: int, heap_size: int) None ¶
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12] >>> heapify(array, len(array) // 2, len(array))
- sorts.intro_sort.insertion_sort(array: list, start: int = 0, end: int = 0) list ¶
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12] >>> insertion_sort(array, 0, len(array)) [1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79] >>> array = [21, 15, 11, 45, -2, -11, 46] >>> insertion_sort(array, 0, len(array)) [-11, -2, 11, 15, 21, 45, 46] >>> array = [-2, 0, 89, 11, 48, 79, 12] >>> insertion_sort(array, 0, len(array)) [-2, 0, 11, 12, 48, 79, 89] >>> array = ['a', 'z', 'd', 'p', 'v', 'l', 'o', 'o'] >>> insertion_sort(array, 0, len(array)) ['a', 'd', 'l', 'o', 'o', 'p', 'v', 'z'] >>> array = [73.568, 73.56, -45.03, 1.7, 0, 89.45] >>> insertion_sort(array, 0, len(array)) [-45.03, 0, 1.7, 73.56, 73.568, 89.45]
- sorts.intro_sort.intro_sort(array: list, start: int, end: int, size_threshold: int, max_depth: int) list ¶
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12] >>> max_depth = 2 * math.ceil(math.log2(len(array))) >>> intro_sort(array, 0, len(array), 16, max_depth) [1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79]
- sorts.intro_sort.median_of_3(array: list, first_index: int, middle_index: int, last_index: int) int ¶
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12] >>> median_of_3(array, 0, ((len(array) - 0) // 2) + 1, len(array) - 1) 12 >>> array = [13, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12] >>> median_of_3(array, 0, ((len(array) - 0) // 2) + 1, len(array) - 1) 13 >>> array = [4, 2, 6, 8, 1, 7, 8, 22, 15, 14, 27, 79, 23, 45, 14, 16] >>> median_of_3(array, 0, ((len(array) - 0) // 2) + 1, len(array) - 1) 14
- sorts.intro_sort.partition(array: list, low: int, high: int, pivot: int) int ¶
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12] >>> partition(array, 0, len(array), 12) 8 >>> array = [21, 15, 11, 45, -2, -11, 46] >>> partition(array, 0, len(array), 15) 3 >>> array = ['a', 'z', 'd', 'p', 'v', 'l', 'o', 'o'] >>> partition(array, 0, len(array), 'p') 5 >>> array = [6.2, -45.54, 8465.20, 758.56, -457.0, 0, 1, 2.879, 1.7, 11.7] >>> partition(array, 0, len(array), 2.879) 6
- sorts.intro_sort.sort(array: list) list ¶
- Parameters:
collection – some mutable ordered collection with heterogeneous
comparable items inside :return: the same collection ordered by ascending
Examples: >>> sort([4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]) [1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79] >>> sort([-1, -5, -3, -13, -44]) [-44, -13, -5, -3, -1] >>> sort([]) [] >>> sort([5]) [5] >>> sort([-3, 0, -7, 6, 23, -34]) [-34, -7, -3, 0, 6, 23] >>> sort([1.7, 1.0, 3.3, 2.1, 0.3 ]) [0.3, 1.0, 1.7, 2.1, 3.3] >>> sort([‘d’, ‘a’, ‘b’, ‘e’, ‘c’]) [‘a’, ‘b’, ‘c’, ‘d’, ‘e’]
- sorts.intro_sort.user_input¶