project_euler.problem_188.sol1¶
Project Euler Problem 188: https://projecteuler.net/problem=188
The hyperexponentiation of a number
The hyperexponentiation or tetration of a number a by a positive integer b, denoted by a↑↑b or b^a, is recursively defined by:
a↑↑1 = a, a↑↑(k+1) = a(a↑↑k).
Thus we have e.g. 3↑↑2 = 3^3 = 27, hence 3↑↑3 = 3^27 = 7625597484987 and 3↑↑4 is roughly 103.6383346400240996*10^12.
Find the last 8 digits of 1777↑↑1855.
- References:
Functions¶
|
Returns the modular exponentiation, that is the value |
|
Returns the last 8 digits of the hyperexponentiation of base by |
Module Contents¶
- project_euler.problem_188.sol1._modexpt(base: int, exponent: int, modulo_value: int) int ¶
Returns the modular exponentiation, that is the value of base ** exponent % modulo_value, without calculating the actual number. >>> _modexpt(2, 4, 10) 6 >>> _modexpt(2, 1024, 100) 16 >>> _modexpt(13, 65535, 7) 6
- project_euler.problem_188.sol1.solution(base: int = 1777, height: int = 1855, digits: int = 8) int ¶
Returns the last 8 digits of the hyperexponentiation of base by height, i.e. the number base↑↑height:
>>> solution(base=3, height=2) 27 >>> solution(base=3, height=3) 97484987 >>> solution(base=123, height=456, digits=4) 2547