project_euler.problem_174.sol1

Project Euler Problem 174: https://projecteuler.net/problem=174

We shall define a square lamina to be a square outline with a square “hole” so that the shape possesses vertical and horizontal symmetry.

Given eight tiles it is possible to form a lamina in only one way: 3x3 square with a 1x1 hole in the middle. However, using thirty-two tiles it is possible to form two distinct laminae.

If t represents the number of tiles used, we shall say that t = 8 is type L(1) and t = 32 is type L(2).

Let N(n) be the number of t ≤ 1000000 such that t is type L(n); for example, N(15) = 832.

What is sum N(n) for 1 ≤ n ≤ 10?

Functions

solution(→ int)

Return the sum of N(n) for 1 <= n <= n_limit.

Module Contents

project_euler.problem_174.sol1.solution(t_limit: int = 1000000, n_limit: int = 10) int

Return the sum of N(n) for 1 <= n <= n_limit.

>>> solution(1000,5)
222
>>> solution(1000,10)
249
>>> solution(10000,10)
2383