project_euler.problem_117.sol1¶
Project Euler Problem 117: https://projecteuler.net/problem=117
Using a combination of grey square tiles and oblong tiles chosen from: red tiles (measuring two units), green tiles (measuring three units), and blue tiles (measuring four units), it is possible to tile a row measuring five units in length in exactly fifteen different ways.
|grey|grey|grey|grey|grey| |red,red|grey|grey|grey|
|grey|red,red|grey|grey| |grey|grey|red,red|grey|
|grey|grey|grey|red,red| |red,red|red,red|grey|
|red,red|grey|red,red| |grey|red,red|red,red|
|green,green,green|grey|grey| |grey|green,green,green|grey|
|grey|grey|green,green,green| |red,red|green,green,green|
How many ways can a row measuring fifty units in length be tiled?
NOTE: This is related to Problem 116 (https://projecteuler.net/problem=116).
Functions¶
|
Returns the number of ways can a row of the given length be tiled |
Module Contents¶
- project_euler.problem_117.sol1.solution(length: int = 50) int ¶
Returns the number of ways can a row of the given length be tiled
>>> solution(5) 15