project_euler.problem_009.sol1

Project Euler Problem 9: https://projecteuler.net/problem=9

Special Pythagorean triplet

A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,

a^2 + b^2 = c^2

For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.

There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product a*b*c.

References:

Functions

benchmark(→ None)

Benchmark code comparing two different version function.

solution(→ int)

Returns the product of a,b,c which are Pythagorean Triplet that satisfies

solution_fast(→ int)

Returns the product of a,b,c which are Pythagorean Triplet that satisfies

Module Contents

project_euler.problem_009.sol1.benchmark() None

Benchmark code comparing two different version function.

project_euler.problem_009.sol1.solution() int

Returns the product of a,b,c which are Pythagorean Triplet that satisfies the following:

  1. a < b < c

  2. a**2 + b**2 = c**2

  3. a + b + c = 1000

>>> solution()
31875000
project_euler.problem_009.sol1.solution_fast() int

Returns the product of a,b,c which are Pythagorean Triplet that satisfies the following:

  1. a < b < c

  2. a**2 + b**2 = c**2

  3. a + b + c = 1000

>>> solution_fast()
31875000