physics.n_body_simulation

In physics and astronomy, a gravitational N-body simulation is a simulation of a dynamical system of particles under the influence of gravity. The system consists of a number of bodies, each of which exerts a gravitational force on all other bodies. These forces are calculated using Newton’s law of universal gravitation. The Euler method is used at each time-step to calculate the change in velocity and position brought about by these forces. Softening is used to prevent numerical divergences when a particle comes too close to another (and the force goes to infinity). (Description adapted from https://en.wikipedia.org/wiki/N-body_simulation ) (See also http://www.shodor.org/refdesk/Resources/Algorithms/EulersMethod/ )

Attributes

DELTA_TIME

INTERVAL

Classes

Body

BodySystem

This class is used to hold the bodies, the gravitation constant, the time

Functions

example_1(→ BodySystem)

Example 1: figure-8 solution to the 3-body-problem

example_2(→ BodySystem)

Example 2: Moon's orbit around the earth

example_3(→ BodySystem)

Example 3: Random system with many bodies.

plot(→ None)

Utility function to plot how the given body-system evolves over time.

update_step(→ None)

Updates the body-system and applies the change to the patch-list used for plotting

Module Contents

class physics.n_body_simulation.Body(position_x: float, position_y: float, velocity_x: float, velocity_y: float, mass: float = 1.0, size: float = 1.0, color: str = 'blue')
update_position(delta_time: float) None

Euler algorithm for position

>>> body_1 = Body(0.,0.,1.,0.)
>>> body_1.update_position(1.)
>>> body_1.position
(1.0, 0.0)
>>> body_1.update_position(1.)
>>> body_1.position
(2.0, 0.0)
>>> body_2 = Body(10.,10.,0.,-2.)
>>> body_2.update_position(1.)
>>> body_2.position
(10.0, 8.0)
>>> body_2.update_position(1.)
>>> body_2.position
(10.0, 6.0)
update_velocity(force_x: float, force_y: float, delta_time: float) None

Euler algorithm for velocity

>>> body_1 = Body(0.,0.,0.,0.)
>>> body_1.update_velocity(1.,0.,1.)
>>> body_1.velocity
(1.0, 0.0)
>>> body_1.update_velocity(1.,0.,1.)
>>> body_1.velocity
(2.0, 0.0)
>>> body_2 = Body(0.,0.,5.,0.)
>>> body_2.update_velocity(0.,-10.,10.)
>>> body_2.velocity
(5.0, -100.0)
>>> body_2.update_velocity(0.,-10.,10.)
>>> body_2.velocity
(5.0, -200.0)
color
mass
property position: tuple[float, float]
position_x
position_y
size
property velocity: tuple[float, float]
velocity_x
velocity_y
class physics.n_body_simulation.BodySystem(bodies: list[Body], gravitation_constant: float = 1.0, time_factor: float = 1.0, softening_factor: float = 0.0)

This class is used to hold the bodies, the gravitation constant, the time factor and the softening factor. The time factor is used to control the speed of the simulation. The softening factor is used for softening, a numerical trick for N-body simulations to prevent numerical divergences when two bodies get too close to each other.

__len__() int
update_system(delta_time: float) None

For each body, loop through all other bodies to calculate the total force they exert on it. Use that force to update the body’s velocity.

>>> body_system_1 = BodySystem([Body(0,0,0,0), Body(10,0,0,0)])
>>> len(body_system_1)
2
>>> body_system_1.update_system(1)
>>> body_system_1.bodies[0].position
(0.01, 0.0)
>>> body_system_1.bodies[0].velocity
(0.01, 0.0)
>>> body_system_2 = BodySystem([Body(-10,0,0,0), Body(10,0,0,0, mass=4)], 1, 10)
>>> body_system_2.update_system(1)
>>> body_system_2.bodies[0].position
(-9.0, 0.0)
>>> body_system_2.bodies[0].velocity
(0.1, 0.0)
bodies
gravitation_constant
softening_factor
time_factor
physics.n_body_simulation.example_1() BodySystem

Example 1: figure-8 solution to the 3-body-problem This example can be seen as a test of the implementation: given the right initial conditions, the bodies should move in a figure-8. (initial conditions taken from http://www.artcompsci.org/vol_1/v1_web/node56.html) >>> body_system = example_1() >>> len(body_system) 3

physics.n_body_simulation.example_2() BodySystem

Example 2: Moon’s orbit around the earth This example can be seen as a test of the implementation: given the right initial conditions, the moon should orbit around the earth as it actually does. (mass, velocity and distance taken from https://en.wikipedia.org/wiki/Earth and https://en.wikipedia.org/wiki/Moon) No doctest provided since this function does not have a return value.

physics.n_body_simulation.example_3() BodySystem

Example 3: Random system with many bodies. No doctest provided since this function does not have a return value.

physics.n_body_simulation.plot(title: str, body_system: BodySystem, x_start: float = -1, x_end: float = 1, y_start: float = -1, y_end: float = 1) None

Utility function to plot how the given body-system evolves over time. No doctest provided since this function does not have a return value.

physics.n_body_simulation.update_step(body_system: BodySystem, delta_time: float, patches: list[matplotlib.pyplot.Circle]) None

Updates the body-system and applies the change to the patch-list used for plotting

>>> body_system_1 = BodySystem([Body(0,0,0,0), Body(10,0,0,0)])
>>> patches_1 = [plt.Circle((body.position_x, body.position_y), body.size,
... fc=body.color)for body in body_system_1.bodies] 
>>> update_step(body_system_1, 1, patches_1)
>>> patches_1[0].center
(0.01, 0.0)
>>> body_system_2 = BodySystem([Body(-10,0,0,0), Body(10,0,0,0, mass=4)], 1, 10)
>>> patches_2 = [plt.Circle((body.position_x, body.position_y), body.size,
... fc=body.color)for body in body_system_2.bodies] 
>>> update_step(body_system_2, 1, patches_2)
>>> patches_2[0].center
(-9.0, 0.0)
physics.n_body_simulation.DELTA_TIME
physics.n_body_simulation.INTERVAL = 20