neural_network.activation_functions.softplus¶
Softplus Activation Function
Use Case: The Softplus function is a smooth approximation of the ReLU function. For more detailed information, you can refer to the following link: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Softplus
Functions¶
|
Implements the Softplus activation function. |
Module Contents¶
- neural_network.activation_functions.softplus.softplus(vector: numpy.ndarray) numpy.ndarray ¶
Implements the Softplus activation function.
- Parameters:
vector (np.ndarray): The input array for the Softplus activation.
- Returns:
np.ndarray: The input array after applying the Softplus activation.
Formula: f(x) = ln(1 + e^x)
Examples: >>> softplus(np.array([2.3, 0.6, -2, -3.8])) array([2.39554546, 1.03748795, 0.12692801, 0.02212422])
>>> softplus(np.array([-9.2, -0.3, 0.45, -4.56])) array([1.01034298e-04, 5.54355244e-01, 9.43248946e-01, 1.04077103e-02])