neural_network.activation_functions.scaled_exponential_linear_unit¶
Implements the Scaled Exponential Linear Unit or SELU function. The function takes a vector of K real numbers and two real numbers alpha(default = 1.6732) & lambda (default = 1.0507) as input and then applies the SELU function to each element of the vector. SELU is a self-normalizing activation function. It is a variant of the ELU. The main advantage of SELU is that we can be sure that the output will always be standardized due to its self-normalizing behavior. That means there is no need to include Batch-Normalization layers. References : https://iq.opengenus.org/scaled-exponential-linear-unit/
Functions¶
|
Applies the Scaled Exponential Linear Unit function to each element of the vector. |
Module Contents¶
- neural_network.activation_functions.scaled_exponential_linear_unit.scaled_exponential_linear_unit(vector: numpy.ndarray, alpha: float = 1.6732, lambda_: float = 1.0507) numpy.ndarray ¶
Applies the Scaled Exponential Linear Unit function to each element of the vector. Parameters :
vector : np.ndarray alpha : float (default = 1.6732) lambda_ : float (default = 1.0507)
Returns : np.ndarray Formula : f(x) = lambda_ * x if x > 0
lambda_ * alpha * (e**x - 1) if x <= 0
Examples : >>> scaled_exponential_linear_unit(vector=np.array([1.3, 3.7, 2.4])) array([1.36591, 3.88759, 2.52168])
>>> scaled_exponential_linear_unit(vector=np.array([1.3, 4.7, 8.2])) array([1.36591, 4.93829, 8.61574])