neural_network.activation_functions.mish¶
Mish Activation Function
Use Case: Improved version of the ReLU activation function used in Computer Vision. For more detailed information, you can refer to the following link: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Mish
Functions¶
|
Implements the Mish activation function. |
Module Contents¶
- neural_network.activation_functions.mish.mish(vector: numpy.ndarray) numpy.ndarray ¶
Implements the Mish activation function.
- Parameters:
vector (np.ndarray): The input array for Mish activation.
- Returns:
np.ndarray: The input array after applying the Mish activation.
- Formula:
f(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^x))
Examples: >>> mish(vector=np.array([2.3,0.6,-2,-3.8])) array([ 2.26211893, 0.46613649, -0.25250148, -0.08405831])
>>> mish(np.array([-9.2, -0.3, 0.45, -4.56])) array([-0.00092952, -0.15113318, 0.33152014, -0.04745745])