neural_network.activation_functions.gaussian_error_linear_unit¶
This script demonstrates an implementation of the Gaussian Error Linear Unit function. * https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions
The function takes a vector of K real numbers as input and returns x * sigmoid(1.702*x). Gaussian Error Linear Unit (GELU) is a high-performing neural network activation function.
This script is inspired by a corresponding research paper. * https://arxiv.org/abs/1606.08415
Functions¶
|
Implements the Gaussian Error Linear Unit (GELU) function |
|
Mathematical function sigmoid takes a vector x of K real numbers as input and |
Module Contents¶
- neural_network.activation_functions.gaussian_error_linear_unit.gaussian_error_linear_unit(vector: numpy.ndarray) numpy.ndarray ¶
Implements the Gaussian Error Linear Unit (GELU) function
- Parameters:
vector (np.ndarray): A numpy array of shape (1, n) consisting of real values
- Returns:
gelu_vec (np.ndarray): The input numpy array, after applying gelu
Examples: >>> gaussian_error_linear_unit(np.array([-1.0, 1.0, 2.0])) array([-0.15420423, 0.84579577, 1.93565862])
>>> gaussian_error_linear_unit(np.array([-3])) array([-0.01807131])
- neural_network.activation_functions.gaussian_error_linear_unit.sigmoid(vector: numpy.ndarray) numpy.ndarray ¶
Mathematical function sigmoid takes a vector x of K real numbers as input and returns 1/ (1 + e^-x). https://en.wikipedia.org/wiki/Sigmoid_function
>>> sigmoid(np.array([-1.0, 1.0, 2.0])) array([0.26894142, 0.73105858, 0.88079708])