maths.trapezoidal_rule¶
Numerical integration or quadrature for a smooth function f with known values at x_i
Functions¶
|
This is the function to integrate, f(x) = (x - 0)^2 = x^2. |
|
Main function to test the trapezoidal rule. |
|
Generates points between a and b with step size h for trapezoidal integration. |
|
Implements the extended trapezoidal rule for numerical integration. |
Module Contents¶
- maths.trapezoidal_rule.f(x)¶
This is the function to integrate, f(x) = (x - 0)^2 = x^2.
- Parameters:
x – The input value
- Returns:
The value of f(x)
>>> f(0) 0 >>> f(1) 1 >>> f(0.5) 0.25
- maths.trapezoidal_rule.main()¶
Main function to test the trapezoidal rule. :a: Lower bound of integration :b: Upper bound of integration :steps: define number of steps or resolution :boundary: define boundary of integration
>>> main() y = 0.3349999999999999
- maths.trapezoidal_rule.make_points(a, b, h)¶
Generates points between a and b with step size h for trapezoidal integration.
- Parameters:
a – The lower bound of integration
b – The upper bound of integration
h – The step size
- Yield:
The next x-value in the range (a, b)
>>> list(make_points(0, 1, 0.1)) [0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7, 0.7999999999999999, 0.8999999999999999] >>> list(make_points(0, 10, 2.5)) [2.5, 5.0, 7.5] >>> list(make_points(0, 10, 2)) [2, 4, 6, 8] >>> list(make_points(1, 21, 5)) [6, 11, 16] >>> list(make_points(1, 5, 2)) [3] >>> list(make_points(1, 4, 3)) []
- maths.trapezoidal_rule.trapezoidal_rule(boundary, steps)¶
Implements the extended trapezoidal rule for numerical integration. The function f(x) is provided below.
- Parameters:
boundary – List containing the lower and upper bounds of integration [a, b]
steps – The number of steps (intervals) used in the approximation
- Returns:
The numerical approximation of the integral
>>> abs(trapezoidal_rule([0, 1], 10) - 0.33333) < 0.01 True >>> abs(trapezoidal_rule([0, 1], 100) - 0.33333) < 0.01 True >>> abs(trapezoidal_rule([0, 2], 1000) - 2.66667) < 0.01 True >>> abs(trapezoidal_rule([1, 2], 1000) - 2.33333) < 0.01 True