maths.tanh¶
This script demonstrates the implementation of the tangent hyperbolic or tanh function.
The function takes a vector of K real numbers as input and then (e^x - e^(-x))/(e^x + e^(-x)). After through tanh, the element of the vector mostly -1 between 1.
Script inspired from its corresponding Wikipedia article https://en.wikipedia.org/wiki/Activation_function
Functions¶
|
Implements the tanh function |
Module Contents¶
- maths.tanh.tangent_hyperbolic(vector: numpy.ndarray) numpy.ndarray ¶
Implements the tanh function
- Parameters:
vector: np.ndarray
- Returns:
tanh (np.array): The input numpy array after applying tanh.
mathematically (e^x - e^(-x))/(e^x + e^(-x)) can be written as (2/(1+e^(-2x))-1
- Examples:
>>> tangent_hyperbolic(np.array([1,5,6,-0.67])) array([ 0.76159416, 0.9999092 , 0.99998771, -0.58497988])
>>> tangent_hyperbolic(np.array([8,10,2,-0.98,13])) array([ 0.99999977, 1. , 0.96402758, -0.7530659 , 1. ])