maths.tanh

This script demonstrates the implementation of the tangent hyperbolic or tanh function.

The function takes a vector of K real numbers as input and then (e^x - e^(-x))/(e^x + e^(-x)). After through tanh, the element of the vector mostly -1 between 1.

Script inspired from its corresponding Wikipedia article https://en.wikipedia.org/wiki/Activation_function

Functions

tangent_hyperbolic(→ numpy.ndarray)

Implements the tanh function

Module Contents

maths.tanh.tangent_hyperbolic(vector: numpy.ndarray) numpy.ndarray

Implements the tanh function

Parameters:

vector: np.ndarray

Returns:

tanh (np.array): The input numpy array after applying tanh.

mathematically (e^x - e^(-x))/(e^x + e^(-x)) can be written as (2/(1+e^(-2x))-1

Examples:
>>> tangent_hyperbolic(np.array([1,5,6,-0.67]))
array([ 0.76159416,  0.9999092 ,  0.99998771, -0.58497988])
>>> tangent_hyperbolic(np.array([8,10,2,-0.98,13]))
array([ 0.99999977,  1.        ,  0.96402758, -0.7530659 ,  1.        ])