maths.special_numbers.pronic_number

== Pronic Number == A number n is said to be a Proic number if there exists an integer m such that n = m * (m + 1)

Examples of Proic Numbers: 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110 … https://en.wikipedia.org/wiki/Pronic_number

Functions

is_pronic(→ bool)

# doctest: +NORMALIZE_WHITESPACE

Module Contents

maths.special_numbers.pronic_number.is_pronic(number: int) bool

# doctest: +NORMALIZE_WHITESPACE This functions takes an integer number as input. returns True if the number is pronic. >>> is_pronic(-1) False >>> is_pronic(0) True >>> is_pronic(2) True >>> is_pronic(5) False >>> is_pronic(6) True >>> is_pronic(8) False >>> is_pronic(30) True >>> is_pronic(32) False >>> is_pronic(2147441940) True >>> is_pronic(9223372033963249500) True >>> is_pronic(6.0) Traceback (most recent call last):

TypeError: Input value of [number=6.0] must be an integer