maths.special_numbers.armstrong_numbers

An Armstrong number is equal to the sum of its own digits each raised to the power of the number of digits.

For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370.

Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers.

On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188

Attributes

FAILING

PASSING

Functions

armstrong_number(→ bool)

Return True if n is an Armstrong number or False if it is not.

main()

Request that user input an integer and tell them if it is Armstrong number.

narcissistic_number(→ bool)

Return True if n is a narcissistic number or False if it is not.

pluperfect_number(→ bool)

Return True if n is a pluperfect number or False if it is not

Module Contents

maths.special_numbers.armstrong_numbers.armstrong_number(n: int) bool

Return True if n is an Armstrong number or False if it is not.

>>> all(armstrong_number(n) for n in PASSING)
True
>>> any(armstrong_number(n) for n in FAILING)
False
maths.special_numbers.armstrong_numbers.main()

Request that user input an integer and tell them if it is Armstrong number.

maths.special_numbers.armstrong_numbers.narcissistic_number(n: int) bool

Return True if n is a narcissistic number or False if it is not.

>>> all(narcissistic_number(n) for n in PASSING)
True
>>> any(narcissistic_number(n) for n in FAILING)
False
maths.special_numbers.armstrong_numbers.pluperfect_number(n: int) bool

Return True if n is a pluperfect number or False if it is not

>>> all(pluperfect_number(n) for n in PASSING)
True
>>> any(pluperfect_number(n) for n in FAILING)
False
maths.special_numbers.armstrong_numbers.FAILING: tuple
maths.special_numbers.armstrong_numbers.PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401)