maths.primelib¶
Created on Thu Oct 5 16:44:23 2017
@author: Christian Bender
This Python library contains some useful functions to deal with prime numbers and whole numbers.
Overview:
is_prime(number) sieve_er(N) get_prime_numbers(N) prime_factorization(number) greatest_prime_factor(number) smallest_prime_factor(number) get_prime(n) get_primes_between(pNumber1, pNumber2)
is_even(number) is_odd(number) kg_v(number1, number2) // least common multiple get_divisors(number) // all divisors of ‘number’ inclusive 1, number is_perfect_number(number)
NEW-FUNCTIONS
simplify_fraction(numerator, denominator) factorial (n) // n! fib (n) // calculate the n-th fibonacci term.
goldbach(number) // Goldbach’s assumption
Functions¶
|
input: positive integer 'n' |
|
input: positive integer 'n' |
|
input: positive integer 'n' >= 1 |
|
Gets the n-th prime number. |
input: positive integer 'N' > 2 |
|
|
input: prime numbers 'pNumber1' and 'pNumber2' |
|
Goldbach's assumption |
|
input: positive integer 'number' >= 0 |
|
input: integer 'number' |
|
input: integer 'number' |
|
input: positive integer 'number' > 1 |
|
input: positive integer 'number' |
|
Least common multiple |
|
input: positive integer 'number' |
|
input: positive integer 'N' > 2 |
|
input: two integer 'numerator' and 'denominator' |
|
input: integer 'number' >= 0 |
Module Contents¶
- maths.primelib.factorial(n)¶
input: positive integer ‘n’ returns the factorial of ‘n’ (n!)
>>> factorial(0) 1 >>> factorial(20) 2432902008176640000 >>> factorial(-1) Traceback (most recent call last): ... AssertionError: 'n' must been a int and >= 0 >>> factorial("test") Traceback (most recent call last): ... AssertionError: 'n' must been a int and >= 0
- maths.primelib.fib(n: int) int ¶
input: positive integer ‘n’ returns the n-th fibonacci term , indexing by 0
>>> fib(0) 1 >>> fib(5) 8 >>> fib(20) 10946 >>> fib(99) 354224848179261915075 >>> fib(-1) Traceback (most recent call last): ... AssertionError: 'n' must been an int and >= 0 >>> fib("test") Traceback (most recent call last): ... AssertionError: 'n' must been an int and >= 0
- maths.primelib.get_divisors(n)¶
input: positive integer ‘n’ >= 1 returns all divisors of n (inclusive 1 and ‘n’)
>>> get_divisors(8) [1, 2, 4, 8] >>> get_divisors(824) [1, 2, 4, 8, 103, 206, 412, 824] >>> get_divisors(-1) Traceback (most recent call last): ... AssertionError: 'n' must been int and >= 1 >>> get_divisors("test") Traceback (most recent call last): ... AssertionError: 'n' must been int and >= 1
- maths.primelib.get_prime(n)¶
Gets the n-th prime number. input: positive integer ‘n’ >= 0 returns the n-th prime number, beginning at index 0
>>> get_prime(0) 2 >>> get_prime(8) 23 >>> get_prime(824) 6337 >>> get_prime(-1) Traceback (most recent call last): ... AssertionError: 'number' must been a positive int >>> get_prime("test") Traceback (most recent call last): ... AssertionError: 'number' must been a positive int
- maths.primelib.get_prime_numbers(n)¶
input: positive integer ‘N’ > 2 returns a list of prime numbers from 2 up to N (inclusive) This function is more efficient as function ‘sieveEr(…)’
>>> get_prime_numbers(8) [2, 3, 5, 7] >>> get_prime_numbers(-1) Traceback (most recent call last): ... AssertionError: 'N' must been an int and > 2 >>> get_prime_numbers("test") Traceback (most recent call last): ... AssertionError: 'N' must been an int and > 2
- maths.primelib.get_primes_between(p_number_1, p_number_2)¶
- input: prime numbers ‘pNumber1’ and ‘pNumber2’
pNumber1 < pNumber2
- returns a list of all prime numbers between ‘pNumber1’ (exclusive)
and ‘pNumber2’ (exclusive)
>>> get_primes_between(3, 67) [5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61] >>> get_primes_between(0) Traceback (most recent call last): ... TypeError: get_primes_between() missing 1 required positional argument: 'p_number_2' >>> get_primes_between(0, 1) Traceback (most recent call last): ... AssertionError: The arguments must been prime numbers and 'pNumber1' < 'pNumber2' >>> get_primes_between(-1, 3) Traceback (most recent call last): ... AssertionError: 'number' must been an int and positive >>> get_primes_between("test","test") Traceback (most recent call last): ... AssertionError: 'number' must been an int and positive
- maths.primelib.goldbach(number)¶
Goldbach’s assumption input: a even positive integer ‘number’ > 2 returns a list of two prime numbers whose sum is equal to ‘number’
>>> goldbach(8) [3, 5] >>> goldbach(824) [3, 821] >>> goldbach(0) Traceback (most recent call last): ... AssertionError: 'number' must been an int, even and > 2 >>> goldbach(-1) Traceback (most recent call last): ... AssertionError: 'number' must been an int, even and > 2 >>> goldbach("test") Traceback (most recent call last): ... AssertionError: 'number' must been an int, even and > 2
- maths.primelib.greatest_prime_factor(number)¶
input: positive integer ‘number’ >= 0 returns the greatest prime number factor of ‘number’
>>> greatest_prime_factor(0) 0 >>> greatest_prime_factor(8) 2 >>> greatest_prime_factor(287) 41 >>> greatest_prime_factor(-1) Traceback (most recent call last): ... AssertionError: 'number' must been an int and >= 0 >>> greatest_prime_factor("test") Traceback (most recent call last): ... AssertionError: 'number' must been an int and >= 0
- maths.primelib.is_even(number)¶
input: integer ‘number’ returns true if ‘number’ is even, otherwise false.
>>> is_even(0) True >>> is_even(8) True >>> is_even(287) False >>> is_even(-1) False >>> is_even("test") Traceback (most recent call last): ... AssertionError: 'number' must been an int
- maths.primelib.is_odd(number)¶
input: integer ‘number’ returns true if ‘number’ is odd, otherwise false.
>>> is_odd(0) False >>> is_odd(8) False >>> is_odd(287) True >>> is_odd(-1) True >>> is_odd("test") Traceback (most recent call last): ... AssertionError: 'number' must been an int
- maths.primelib.is_perfect_number(number)¶
input: positive integer ‘number’ > 1 returns true if ‘number’ is a perfect number otherwise false.
>>> is_perfect_number(28) True >>> is_perfect_number(824) False >>> is_perfect_number(-1) Traceback (most recent call last): ... AssertionError: 'number' must been an int and >= 1 >>> is_perfect_number("test") Traceback (most recent call last): ... AssertionError: 'number' must been an int and >= 1
- maths.primelib.is_prime(number: int) bool ¶
input: positive integer ‘number’ returns true if ‘number’ is prime otherwise false.
>>> is_prime(3) True >>> is_prime(10) False >>> is_prime(97) True >>> is_prime(9991) False >>> is_prime(-1) Traceback (most recent call last): ... AssertionError: 'number' must been an int and positive >>> is_prime("test") Traceback (most recent call last): ... AssertionError: 'number' must been an int and positive
- maths.primelib.kg_v(number1, number2)¶
Least common multiple input: two positive integer ‘number1’ and ‘number2’ returns the least common multiple of ‘number1’ and ‘number2’
>>> kg_v(8,10) 40 >>> kg_v(824,67) 55208 >>> kg_v(1, 10) 10 >>> kg_v(0) Traceback (most recent call last): ... TypeError: kg_v() missing 1 required positional argument: 'number2' >>> kg_v(10,-1) Traceback (most recent call last): ... AssertionError: 'number1' and 'number2' must been positive integer. >>> kg_v("test","test2") Traceback (most recent call last): ... AssertionError: 'number1' and 'number2' must been positive integer.
- maths.primelib.prime_factorization(number)¶
input: positive integer ‘number’ returns a list of the prime number factors of ‘number’
>>> prime_factorization(0) [0] >>> prime_factorization(8) [2, 2, 2] >>> prime_factorization(287) [7, 41] >>> prime_factorization(-1) Traceback (most recent call last): ... AssertionError: 'number' must been an int and >= 0 >>> prime_factorization("test") Traceback (most recent call last): ... AssertionError: 'number' must been an int and >= 0
- maths.primelib.sieve_er(n)¶
input: positive integer ‘N’ > 2 returns a list of prime numbers from 2 up to N.
This function implements the algorithm called sieve of erathostenes.
>>> sieve_er(8) [2, 3, 5, 7] >>> sieve_er(-1) Traceback (most recent call last): ... AssertionError: 'N' must been an int and > 2 >>> sieve_er("test") Traceback (most recent call last): ... AssertionError: 'N' must been an int and > 2
- maths.primelib.simplify_fraction(numerator, denominator)¶
input: two integer ‘numerator’ and ‘denominator’ assumes: ‘denominator’ != 0 returns: a tuple with simplify numerator and denominator.
>>> simplify_fraction(10, 20) (1, 2) >>> simplify_fraction(10, -1) (10, -1) >>> simplify_fraction("test","test") Traceback (most recent call last): ... AssertionError: The arguments must been from type int and 'denominator' != 0
- maths.primelib.smallest_prime_factor(number)¶
input: integer ‘number’ >= 0 returns the smallest prime number factor of ‘number’
>>> smallest_prime_factor(0) 0 >>> smallest_prime_factor(8) 2 >>> smallest_prime_factor(287) 7 >>> smallest_prime_factor(-1) Traceback (most recent call last): ... AssertionError: 'number' must been an int and >= 0 >>> smallest_prime_factor("test") Traceback (most recent call last): ... AssertionError: 'number' must been an int and >= 0